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Thank you Kindly

● Aurelien Francillon
– ``Half-Blind Attacks:

Mask ROM Bootloaders are Dangerous''

● Sergey Bratus



  

Let's Exploit Something Small

● 8, 16, and (low end) 32-bit microcontrollers
● No operating system, maybe a libc.
● Defensive features are an accident,

– No ASLR, but still unknown code.

– No NX-bit, but often Harvard architectures.

– Lots of weird registers, custom code.



  

Rogue's Gallery

● 8051
– More popular than X86, AMD64 and ARM.

– Harvard Architecture

– Instructions are byte-aligned.

– Rarely able to execute RAM.

– Thousands of different clones.
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Rogue's Gallery

● MSP430
– 16-bit Von Neumann

– Most, but not all, versions can execute RAM.

– 1kB Mask ROM Bootloader (BSL)

– 16-bit aligned instructions, almost PDP11.

– Used in the GoodFET, Facedancer, SPOT Connect, 
Metawatch, and other devices.
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Rogue's Gallery

● AVR – 8-bit Harvard
● PIC – 8-bit Harvard

– Some have hardware call stack.

● HCS08, 6502, 6805, etc.
– Every old architecture is still around someplace.
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Goals

● On a PC, we want code execution.
– Load malware, drop a shell.

– Hack the Gibson!

● On an MCU, we want code!
– Exploits often used to dump firmware.

– A PEEK primitive is as good as code execution.

● Strange exploit uses:
– Stack smashing for temporary patches.

– Upgrades of unpatchable firmware.



  

Exploiting the 8051

● 8-bit CPU, Harvard Architecture
● RAM is rarely executable.
● Dozens of clones, none of them the same.



  

8051 Memory Spaces

● No such thing as “just a pointer.”
● Call stack is hardware limited, sometimes two 

stacks.
● Different opcodes access different memories.

– CODE – 64 kB, Mostly Flash, with a bit of ROM.

– DATA – 256 bytes for variables and stack.

– IO – Overlaps DATA,
     for Special Function Registers.

– XDATA – 64kB of extended RAM.

● This architecture is everywhere.



  

8051 Exploitation Headaches:
Executing RAM

● Class 8051 doesn't allow execution of RAM.
– CODE and XDATA don't overlap.

● Modern chips have exceptions, but they're 
complicated.

– Chips with little memory just unify the address 
space.  &CODE==&XDATA

– Chips with lots of memory map to different 
locations, small region of overlap.



  

8051 Exploitation Headaches:
Writing to Flash

● Writing to Flash is tricky.
– There is no standard instruction for writing Flash.

– You could use multiple calls to a POKE primitive,
and a good knowledge of the clocks,
and you need to do this reliably in a loop,
and you need to do it without native shellcode.

● There are options.
– Varies by architecture.

– Generally, you abuse the self-reprogramming feature.



  

8051 Exploitation Headaches:
Writing to Flash

● 8051 was Harvard until self-reprogramming was a 
needed feature.  Things change.

● The issue is that you can't read or execute from 
Flash while writing to Flash.

● Three solutions:
– Map RAM into both XDATA and CODE memories.

– Flash reads a JMP $-1 when busy.

– Mask ROM contains code to copy XDATA to 
CODE.  (RAM to Flash)



  

8051 Exploitation Headaches:
Writing to Flash

● Map RAM into both XDATA and CODE memories.
– Just force a return into it.  1996-style exploits work!

● Flash reads a JMP $-1 when busy.
– Much harder, especially if there's no gadget to write 

to flash.

– Sometimes you can use a POKE primitive.

● Mask ROM contains code to copy XDATA to 
CODE.

– Nice and easy to exploit.

– Calling convention is often documented!



  

Example: GPIO Blinking

● Vuln was in a USB bootloader.
● Exploit was supposed to dump Flash and RAM.
● USB buffer is preciously small

– Our first-stage shellcode needs to be tiny.

– We could call the USB stack, but it's complicated.

– We only need to exfiltrate data.

– Let's use the LEDs!



  

Example: GPIO Blinking

● A tiny standalone application:
– 1. Setup the GPIO pin directions to output.

– 2. Blink half of them with a clock.

– 3. Blink the other half with data bits.

– 4. Sniff pins with a logic analyzer to get the bits.

● As shellcode,
– 1. The GPIO pins for LEDs are already directed out.

– 2. while(1) and let God sort it out.



  



  

Example: GPIO Blinking

● Clock LEDs look solid.
● Data LEDs blink irregulary.
● Tap one of each into a logic analyzer.



  

Return to Libc

● Complicated by a lack of Libc
– It's there, but statically linked and pruned.

– Nothing like system() or exec().

● If our goal is to get the Flash,
we can't know what's where in Flash.

● Two tricks:
– Return to the bootloader with privilege escalation.

– Privilege escalation gadget can be found blind!



  

Example: Returning to a Bootloader

● Many chips have a bootloader in Mask ROM.
– This is permanently a part of the chip.

– This cannot be patched or removed affordably.

● This ROM is an excellent return-to-libc target.
– Always at a fixed position.

– Very few revisions to reverse engineer.

– Rather small.

– Includes at least one command shell.



  

Example: Returning to a Bootloader

● MSP430 Bootloader
– 0x0C00 to 0x0FFF, just 1 kB

– Requires the Interrupt Table as a password.

– R11 is a global containing the password status.

● Return-to-BSL Shellcode in Six Bytes
– MOV 0xFFFF, R11;  Pretend we gave a good pass.

– CALL 0x0C0A;   Enter a bit late to not clear R11.



  

Example:
Blind Return-Oriented Programming

● What if we couldn't execute shellcode from RAM?
– Some security-enhanced variants disallow RAM 

exec.

– Competing processors (AVR, 8051) are Harvard.

● We could build a ROP chain
– ROM doesn't contain enough gadgets.

– We don't know where anything is in Flash.

– Let's build it blind!



  

Example:
Blind Return-Oriented Programming

● Suppose the following
– We have a stack-buffer overflow bug.

– We have a copy of ROM, but not of Flash.

– We cannot execute RAM.

● Plan of attack,
– Use ROM entry point to find return address offset.

– Scan for RET statements in Flash by crashes.

– Try each gadget in turn.



  

How the hell does this work!?

● The gadget we need is rather common, rather small.
● We have a very small address space.
● We're not trying to be Turing Complete.
● We have a feedback mechanism,

– Crash indicates the stack is mis-constructed.

– No crash indicates we're getting some gadget.

– Side effects tell us which gadget.



  

Example:
Blind Return-Oriented Programming

● 1. Fuzzing gives us a stack buffer overflow.
● 2. Varying our offset verifies our control of the 

Program Counter by a successful jump into ROM.



  

Example:
Blind Return-Oriented Programming

● Now we control the PC, but we don't know the 
password.  We need a ROP gadget like ``POP R11'', 
which is common in function epilogues.

● 3. Move the BSL entry one word up in memory, 
with a random address in its place.

– If this enters the bootloader, we might have found a 
“RET” instruction.

– If it doesn't, we've found a gadget of some sort.



  

Example:
Blind Return-Oriented Programming

● Now we have some gadgets, but we don't know 
what they do.

– 59 valid gadget entry points in my target.

– 1/50 to 1/150 gadgets/addresses in other samples.

– Varies drastically by architecture and compiler.

● 4. Try all gadget addresses with the appropriate 
stack layout.  Bootloader pops open!



  

Example:
Blind Return-Oriented Programming

● Final call stack, higher addresses at the top.
– 0x0C0E – Bootloader entry, called last.

– 0xFFFF – Value to pop into R11 by our gadget.

– 0x???? – Address of a ``POP R11'' gadget.

● Unknown address doesn't have many candidates,
– Must be at an even address before a RET.

– ~8,000 possibilities in address space, easy to search.

– ~59 possibilities before RET, easier to search.

– Two gadgets, 59**2 or ~4,000 tries.

– Three gadgets, 59**3 or ~200,000 tries.



  

RAM Patching

● On higher-end chips, you patch RAM.
– Many faster chips can't execute Flash directly.

– RAM patches are less likely to brick the target.

– Very useful for backdoor development.

● But RAM gets overwritten.
– You'll need to hook functions that overwrite the IVT.

– It works pretty much like a DOS TSR.



  

Flash Patching

● Suppose you can overwrite Flash, but you can't 
erase it.

– Common when patching the IVT directly.

● NOR Flash isn't like RAM.
– You can clear bits individually,

but only set them as a page.

– Overwrites are a bitwise AND.



  

Flash Overwrites

● 0xFFFF at erasure
● 0xDEAD written.
● ~0xDEAD cleared.
● 0xDEAD remains.

● 0xDEAD at start.
● 0xFF00 written.
● ~0xFF00 (0x00FF) cleared.
● 0xDE00 remains.



  

Flash Patching

● Given only a POKE primitive, you can more easily 
clear bits than set them.

– Page writes are complicated.

– Might break code that's needed to boot or to POKE.

● What tricks can help us choose the right bits to 
clear?



  

Flash Patching

● On the MSP430, RAM is beneath Flash.
– By clearing significant bits,

you can redirect a CALL to a target in RAM.

– CALL 0xBEEF; Call to function in Flash.

– CALL 0x02EF; Call to function in RAM.

● On 8051, 0x00 is a NOP.
– By clearing bytes, you can NOP-out code.

– Opcode table is conveniently arranged by bytes.



  

Parting Thoughts
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