

Travis Goodspeed

Nifty Tricks and Sage Advice
for

Shellcode on Embedded Systems

Travis Goodspeed

Nifty Tricks and Sage Advice
for

Shellcode on Embedded Systems

Thank you Kindly

● Aurelien Francillon
– ``Half-Blind Attacks:

Mask ROM Bootloaders are Dangerous''

● Sergey Bratus

Let's Exploit Something Small

● 8, 16, and (low end) 32-bit microcontrollers
● No operating system, maybe a libc.
● Defensive features are an accident,

– No ASLR, but still unknown code.

– No NX-bit, but often Harvard architectures.

– Lots of weird registers, custom code.

Rogue's Gallery

● 8051
– More popular than X86, AMD64 and ARM.

– Harvard Architecture

– Instructions are byte-aligned.

– Rarely able to execute RAM.

– Thousands of different clones.

nRF24E1G

CC2530

Rogue's Gallery

● MSP430
– 16-bit Von Neumann

– Most, but not all, versions can execute RAM.

– 1kB Mask ROM Bootloader (BSL)

– 16-bit aligned instructions, almost PDP11.

– Used in the GoodFET, Facedancer, SPOT Connect,
Metawatch, and other devices.

MSP430
F2274

Rogue's Gallery

● AVR – 8-bit Harvard
● PIC – 8-bit Harvard

– Some have hardware call stack.

● HCS08, 6502, 6805, etc.
– Every old architecture is still around someplace.

Atmel AVR
ATTiny13V

PIC16F684

Goals

● On a PC, we want code execution.
– Load malware, drop a shell.

– Hack the Gibson!

● On an MCU, we want code!
– Exploits often used to dump firmware.

– A PEEK primitive is as good as code execution.

● Strange exploit uses:
– Stack smashing for temporary patches.

– Upgrades of unpatchable firmware.

Exploiting the 8051

● 8-bit CPU, Harvard Architecture
● RAM is rarely executable.
● Dozens of clones, none of them the same.

8051 Memory Spaces

● No such thing as “just a pointer.”
● Call stack is hardware limited, sometimes two

stacks.
● Different opcodes access different memories.

– CODE – 64 kB, Mostly Flash, with a bit of ROM.

– DATA – 256 bytes for variables and stack.

– IO – Overlaps DATA,
 for Special Function Registers.

– XDATA – 64kB of extended RAM.

● This architecture is everywhere.

8051 Exploitation Headaches:
Executing RAM

● Class 8051 doesn't allow execution of RAM.
– CODE and XDATA don't overlap.

● Modern chips have exceptions, but they're
complicated.

– Chips with little memory just unify the address
space. &CODE==&XDATA

– Chips with lots of memory map to different
locations, small region of overlap.

8051 Exploitation Headaches:
Writing to Flash

● Writing to Flash is tricky.
– There is no standard instruction for writing Flash.

– You could use multiple calls to a POKE primitive,
and a good knowledge of the clocks,
and you need to do this reliably in a loop,
and you need to do it without native shellcode.

● There are options.
– Varies by architecture.

– Generally, you abuse the self-reprogramming feature.

8051 Exploitation Headaches:
Writing to Flash

● 8051 was Harvard until self-reprogramming was a
needed feature. Things change.

● The issue is that you can't read or execute from
Flash while writing to Flash.

● Three solutions:
– Map RAM into both XDATA and CODE memories.

– Flash reads a JMP $-1 when busy.

– Mask ROM contains code to copy XDATA to
CODE. (RAM to Flash)

8051 Exploitation Headaches:
Writing to Flash

● Map RAM into both XDATA and CODE memories.
– Just force a return into it. 1996-style exploits work!

● Flash reads a JMP $-1 when busy.
– Much harder, especially if there's no gadget to write

to flash.

– Sometimes you can use a POKE primitive.

● Mask ROM contains code to copy XDATA to
CODE.

– Nice and easy to exploit.

– Calling convention is often documented!

Example: GPIO Blinking

● Vuln was in a USB bootloader.
● Exploit was supposed to dump Flash and RAM.
● USB buffer is preciously small

– Our first-stage shellcode needs to be tiny.

– We could call the USB stack, but it's complicated.

– We only need to exfiltrate data.

– Let's use the LEDs!

Example: GPIO Blinking

● A tiny standalone application:
– 1. Setup the GPIO pin directions to output.

– 2. Blink half of them with a clock.

– 3. Blink the other half with data bits.

– 4. Sniff pins with a logic analyzer to get the bits.

● As shellcode,
– 1. The GPIO pins for LEDs are already directed out.

– 2. while(1) and let God sort it out.

Example: GPIO Blinking

● Clock LEDs look solid.
● Data LEDs blink irregulary.
● Tap one of each into a logic analyzer.

Return to Libc

● Complicated by a lack of Libc
– It's there, but statically linked and pruned.

– Nothing like system() or exec().

● If our goal is to get the Flash,
we can't know what's where in Flash.

● Two tricks:
– Return to the bootloader with privilege escalation.

– Privilege escalation gadget can be found blind!

Example: Returning to a Bootloader

● Many chips have a bootloader in Mask ROM.
– This is permanently a part of the chip.

– This cannot be patched or removed affordably.

● This ROM is an excellent return-to-libc target.
– Always at a fixed position.

– Very few revisions to reverse engineer.

– Rather small.

– Includes at least one command shell.

Example: Returning to a Bootloader

● MSP430 Bootloader
– 0x0C00 to 0x0FFF, just 1 kB

– Requires the Interrupt Table as a password.

– R11 is a global containing the password status.

● Return-to-BSL Shellcode in Six Bytes
– MOV 0xFFFF, R11; Pretend we gave a good pass.

– CALL 0x0C0A; Enter a bit late to not clear R11.

Example:
Blind Return-Oriented Programming

● What if we couldn't execute shellcode from RAM?
– Some security-enhanced variants disallow RAM

exec.

– Competing processors (AVR, 8051) are Harvard.

● We could build a ROP chain
– ROM doesn't contain enough gadgets.

– We don't know where anything is in Flash.

– Let's build it blind!

Example:
Blind Return-Oriented Programming

● Suppose the following
– We have a stack-buffer overflow bug.

– We have a copy of ROM, but not of Flash.

– We cannot execute RAM.

● Plan of attack,
– Use ROM entry point to find return address offset.

– Scan for RET statements in Flash by crashes.

– Try each gadget in turn.

How the hell does this work!?

● The gadget we need is rather common, rather small.
● We have a very small address space.
● We're not trying to be Turing Complete.
● We have a feedback mechanism,

– Crash indicates the stack is mis-constructed.

– No crash indicates we're getting some gadget.

– Side effects tell us which gadget.

Example:
Blind Return-Oriented Programming

● 1. Fuzzing gives us a stack buffer overflow.
● 2. Varying our offset verifies our control of the

Program Counter by a successful jump into ROM.

Example:
Blind Return-Oriented Programming

● Now we control the PC, but we don't know the
password. We need a ROP gadget like ``POP R11'',
which is common in function epilogues.

● 3. Move the BSL entry one word up in memory,
with a random address in its place.

– If this enters the bootloader, we might have found a
“RET” instruction.

– If it doesn't, we've found a gadget of some sort.

Example:
Blind Return-Oriented Programming

● Now we have some gadgets, but we don't know
what they do.

– 59 valid gadget entry points in my target.

– 1/50 to 1/150 gadgets/addresses in other samples.

– Varies drastically by architecture and compiler.

● 4. Try all gadget addresses with the appropriate
stack layout. Bootloader pops open!

Example:
Blind Return-Oriented Programming

● Final call stack, higher addresses at the top.
– 0x0C0E – Bootloader entry, called last.

– 0xFFFF – Value to pop into R11 by our gadget.

– 0x???? – Address of a ``POP R11'' gadget.

● Unknown address doesn't have many candidates,
– Must be at an even address before a RET.

– ~8,000 possibilities in address space, easy to search.

– ~59 possibilities before RET, easier to search.

– Two gadgets, 59**2 or ~4,000 tries.

– Three gadgets, 59**3 or ~200,000 tries.

RAM Patching

● On higher-end chips, you patch RAM.
– Many faster chips can't execute Flash directly.

– RAM patches are less likely to brick the target.

– Very useful for backdoor development.

● But RAM gets overwritten.
– You'll need to hook functions that overwrite the IVT.

– It works pretty much like a DOS TSR.

Flash Patching

● Suppose you can overwrite Flash, but you can't
erase it.

– Common when patching the IVT directly.

● NOR Flash isn't like RAM.
– You can clear bits individually,

but only set them as a page.

– Overwrites are a bitwise AND.

Flash Overwrites

● 0xFFFF at erasure
● 0xDEAD written.
● ~0xDEAD cleared.
● 0xDEAD remains.

● 0xDEAD at start.
● 0xFF00 written.
● ~0xFF00 (0x00FF) cleared.
● 0xDE00 remains.

Flash Patching

● Given only a POKE primitive, you can more easily
clear bits than set them.

– Page writes are complicated.

– Might break code that's needed to boot or to POKE.

● What tricks can help us choose the right bits to
clear?

Flash Patching

● On the MSP430, RAM is beneath Flash.
– By clearing significant bits,

you can redirect a CALL to a target in RAM.

– CALL 0xBEEF; Call to function in Flash.

– CALL 0x02EF; Call to function in RAM.

● On 8051, 0x00 is a NOP.
– By clearing bytes, you can NOP-out code.

– Opcode table is conveniently arranged by bytes.

Parting Thoughts

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

