BIOS Chronomancy:
Fixing the Static Root of
Trust for Measurement

John Butterworth
Corey Kallenberg
Xeno Kovah

MITRE
oration. All rights reserved.

For internal MITRE use



Introduction

" Who we are:
— Trusted Computing researchers at The MITRE Corporation

®" What MITRE is:

— A non-profit company that runs six US Government "Federally
Funded Research & Development Centers" (FFRDCs)

— We also do a lot of standards work such as CVE, CWE, etc

MITRE



Motivation

" Why:
— Attackers will seek to reach the highest privilege levels and/or the
same privilege levels as the defender
— We believe that access controls can always break down

— We believe that BIOS Chronomancy is capable of detecting an
attacker even when other access controls have broken down

= |s it perfect? Sadly not yet, but we keep making it better
— We believe this is a technology worthy of further exploration
— We hope to inspire others to carry the torch and explore further

MITRE



Outline

" How the foundation of trusted measurement is rooted in
firmware

= We will show that when this trust fails: really (really!) bad things
can happen

— and we'll prove it

= We will introduce BIOS Chronomancy, a technology capable of
detecting an attacker who has achieved equal privileges

= We will show you the results of tests we performed using BIOS
Chronomancy running in System Management Mode

MITRE



Terminology

" Trusted Platform Module (TPM)
— Supports secure key generation and secure key storage.

— Can “seal” keys or data such that they can only be decrypted if the
PCR set hasn’t changed.

— Can act as a root of trust for reporting by signing a quote of its
current PCR set.

= Platform Configuration Register (PCR)
— Store 20 byte hashes representing measurements of the system.
— Are reset to 0x00,, upon reboot.
— Can only be modified with an “Extend” operation.
— Extend_PCRO0(data): PCRO,., = SHA1(PCRO,, || SHA1(data))

new

MITRE



Terminology Continued

" Trusted Boot

— A TPM supported boot of the system where each component in the
boot up process (BIOS, Option ROMs, MBR) are supposed to be
measured into PCRs before control is passed to them.

= Static Root of Trust for Measurement (SRTM)
— The anchor in the Trusted Boot chain.
— Responsible for measuring itself and other parts of the BIOS.
— PCRO holds the measurement of the SRTM.

MITRE



All roots of trust are not created equal

Functional TPM Diagram

TPM PCRs Root of Trust for Reporting RTR
@ * Provides cryptographic mechanism to digitally
sign TPM state and information
RTR RTS Root of Trust for Storage RTS

* Provides cryptographic mechanism to protect
information held outside of the TPM

- Tarnovsky attacks

Our attacks
Root of Trust for Measurement
* Provided by platform to measure platform state
* Defined by platform specification

Interaction between RTR and RTS is important TPM capability

RTM

Base diagram from
http://www.intel.com/content/dam/doc/white-paper/uefi-pi-tcg-firmware-white-paper. pdi“TRE




BIOS Acquisition

" Method 1: Obtain the BIOS ROM from manufacturer
- |0 x|

C:\bios>E6400A29 .EXE —uwriteromfile
C:\bios>

Dell Computer Corporation

L]
\l ]) File E6400429.ROM written,

= Dependent on manufacturer

— May not provide straight-forward method to obtain the actual ROM
image

— Dell, for example, no longer provides this handy feature.
MITRE



BIOS Acquisition

= Method 2: Read it from the BIOS chip using software

= Write your own if you
want to learn the
architecture very well

" Time consuming (but
fun and educational)

= Linux app with iopl()
also works well, better
for testing

#% DebugView on \\HARVEY-PC (local) oo/
File Edit Capture Options Computer Help

sEE | QB A BEBT 9P #

# Time Debug Print .
1 0.00000000 MITRE Flashdump Win7x86 Loading...

2 0.00000367 Initializing SPI flash device...

3 0.00000917 ICHS detected [Device ID = 0x2917]

4 0.00001320 Mapping SPIBAR...

5 0.00001980 SPIBAR located at 0xfedlb800

6 0.00002236 Determining SPI Flash Mode...

7 0.00002603 Descriptor Mode

8 0.00002823 Flash Mode = 1

9 0.00003080 Determining size of flash chip... =
10 0.00003776 Flash chip size = 0x00400000

11 0.00004070 Reading flash chip 0 - Ox3fffff.

12 0.00004290 fladdr = 00000000

13 0.00004546 region size = 00400000

14 0.00004803 fdata offset = 00000010

15 0.00005059 fladdr offset = 00000008

16 3.79325938 Writing flash contents to C:\bios.bin

17 3.80184960 Unmapping SPIBAR.

18 3.80186939 Freeing allocated flash data. o
19 3.80187559 Freeing allocated flash chip.

20 5.49219704 MITRE Flash Dump Unloading o
< n 3

MITRE




10

BIOS Acquisition

" Method 3: Read it from the BIO

S chip using hardware

" Turned out to actually be a requirement ...
"= Not necessarily easy to get at the BIOS chip

MITRE



BIOS Analysis: Arium CPU Debugger FTW!*

*Some [dis]assembly required.

11



12

Q35 Express Chipset

Processor Processor
‘ 0 4GB
Y
System Memory
" Channel A PCI Ex . Channel A
» 1 — ma| . [conscom ]
o Disglay [4— "oy [*
Channel B
System RAM =
b —
DMI| Controller OMI| Controlier
Interface Link nserface Link
A A J
UsB 20 |
- -i- (Supports 12 USB ports { Power Management I
Dual ENCI Controler) . .
- Tom ~2=f"Fm ] -1 BIOS Region Begin
] | SATA (8 ports) Il
- . || System Management
Inted® Mgh Defson (TCO)
T Audio Codec(s) -
Intel®ICHO [ | *
-1 PClEAum X‘[ I
= Emaemet Py B
)
T
- GPIO Lo - ‘
: SPI Flash—2—1 :
’ LPE vF ?
(optonal) [’—I Super V0 | )

™™
(optional _I_Flmmaremb |

www.intel.com/.../datasheet/io-controller-hub-9-datasheet.pdf MITRE



13

Normal E6400 boot sequence 1

0 4GB

Y
1, MCH

System RAM

1] ™M - BIOS Region Begin
:— meticre - |l Configuration
]- Modules
-4 |
T SPI Flash &
] Boot Block

FFFF_FFFO MITRE

1 1

]




Normal E6400 boot sequence 2

0

Channel A (

Intel® ICH9

N

System RAM

PCRO=SHA1(0,, | hash)

™M | hashlng

A
Oy

X

lash (
Boot Block

14

4GB

TCG Measure (SRTM)

MITRE



The Problems with PCRs

= Opaqueness

— No golden set of PCRs is provided by the OEM.

— No description of what is actually being measured and
incorporated into the PCR values.’

— Homogeneous systems can have different PCR values.?
— Duplicate PCR values are unexpected...

Example E6400 PCR Set

hexadecimal value index | TCG-provided description
S5e078afa88ab65d0194d429¢43¢0761d93ad2f97 | O S-CRTM., BIOS, Host Platform Extensions,

and Embedded Option ROMs
a89M8I88caa9590e6129b633b144a68514490d5 | |1 Host Platform Configuration
a89fb8188caa9590e6129b633b144a68514490d5 | 2 Option ROM Code
a891b8I88caa9590e6129b633b144a68514490d5 | 3 Option ROM Configuration and Data
5df3d741116ba76217926bfabebbd4ebbde9fech | 4 IPL Code (usually the MBR) and Boot Attempts
2ad94¢d3935698d6572bad715¢946d6dfecb2dSS5 | 5 IPL Code Configuration and Data

1. The TCG specification gives vague guidelines on what should be incorporated into individual PCR
values, and many decisions are left to the vendor.
2. Based on our own observation of PCR values across various systems.

15

MITRE



16

E6400 PCRO (SRTM) Measurement

FF6E_0OOO

FFFB_231A—
FFFF_0000

|

el S0lg

| sg|npow |

passaidwod
JO uleyn

abu

FFFD_09A2 > —SEv SRTM
FFFD_097C

FFFF_FFFF

PCRO should contain a measurement of the SRTM and other parts
of the BIOS.

In the above diagram, the dark areas represent what the E6400
actually incorporates into the PCR0 measurement.

Only 0xA90 of the total 0x1A0000 bytes in the BIOS range are
incorporated, including:

— The first 64 bytes of the 42 compressed modules.

— Two 8 byte slices at 0xDF4513C0 and OxDF4513C8.

— The SRTM is not incorporated at all.

%00[q
j00g

abuel I

\

MITRE

*BIOS Base is located at FFE6_0000



17

Implications of the weak PCRs

" We can modify the majority of the E6400 BIOS
without changing any of the PCR values.

" Yuriy Bulygin made a similar discovery at
CanSecWest 2013 regarding his ASUS P8P67.

= But what if we want to modify any part of the
BIOS with no limits?

— Like the splash-screen, or the code that instantiates
SMRAM?

MITRE



18

Forging the PCRs

= We can arbitrarily modify any part of the BIOS while still
maintaining the expected PCR set if we do the following:

1. Record the expected hashes that the SRTM calculates and
forwards to the TPM for the PCR_Extend operation(s).

2. Modify the BIOS to prevent the legitimate SRTM from being
called.

3. Insert your own SRTM which simply replays the aforementioned
“expected” hashes to the TPM.

" This method maintains a valid PCR set even if the SRTM
incorporates the entire BIOS into the measurement.

MITRE



19

BIOS Modification: Access Controls

= Access Controls
— Registers which can prevent writes to the BIOS flash*
— Signed Firmware Updates (per NIST 800-155)

= | atitude E6400 BIOS revisions:

— A29 did not protect the flash from direct writes to the firmware flash
from privileged applications

= A30 and higher do ©

— A29 did not provide an option to require Signed Updates (released
prior to NIST 800-155)

= A30 and higher do, as well as Dell’'s newer systems ©

= However, even Access Controls can fail or be bypassed:

— In 2009 ITL showed that firmware signing can be bypassed in their
Attacking Intel BIOS presentation.

— And so have we. We are currently working with Dell to resolve the
vulnerability.

*A detailed discussion about these architectural controls is beyond the scope of this presentation. MITRE



20

Firmware Rootkit Types

= All firmware malware is resident on the NVRAM firmware and is
therefore persistent

= Naive
— That which can be detected by simply observing PCRs

" Tick
— Embeds itself in the firmware
— Evades detection by forging PCRs

— Once in place, can modify any other portion of the BIOS (even
injecting itself into SMM)

" Flea (to be discussed shortly)

MITRE



21

Normal BIOS PCR0O Measurement

0 4GB

" Channel
NN MCH k

System RAM

Controller

| PCRO=SHA1(0,, | 0xf005b411...)

BIOS

Intel® ICH9 |

<(JI93) LVHS <

0xf005b411...

MITRE



22

PCR0O Measurement with a Tick

0 4GB

» Channel A
NN MCH k

System RAM

Controller

| PCRO=SHA1(0,, | 0xf005b411...)
11 , BIOS

Intel® ICH9 |

MITRE



23

Tick Demo Video

MITRE



24

The Flea

= All the same stealth capabilities of the Tick
= Achieves persistence beyond BIOS re-flashes
— “Jumps” from one BIOS revision to another

MITRE



125 |

The Flea

4GB

SPI Flash

MITRE



26

Flea Demo Video

MITRE



27

Countermeasure:
Timing-based attestation

" The fundamental premise:
— "Build your software so that if it's code is modified, it runs slower."

= We coined "timing-based" because it is a superset of the "software-
based"” techniques, but using hardware (e.g. TPM) for timing
measurement

= Meant to replace CRTM, but not reimplement entire SRTM
= Assumptions:

— Attacker has complete control of execution environment before self-
checking begins (i.e. same privilege as defender)

— Self-checksuming code is time-optimal for a given microarchitecture

— There are no free executi_on_slots where an attacker can insert a "free"
instruction and suffer no timing slowdown

= There is a decade of work in this area, we can't do the many many
nuances justices. A timeline of related work here:

— http://bit.ly/11xEmIV

MITRE



28

Components of all self-checks

" Nonce/PseudoRandom Number(PRN)

— Decrease likelihood of precomputation due to storage constraints,
and prevent replay (here only with online SMM-based challenges,
not the boot)

" Read own data

— Incorporated into checksum so if it changes the checksum
changes

" Read own instruction and data pointers
— Indicates where in memory the code itself is executing
= Do all the above in millions of loop iterations

— So that ideally an instruction or two worth of conditional checks per
loop iteration leads to millions of extra instructions in the overall
runtime

MITRE



29

Simplified Selfcheck()

Selfcheck(checksum, nonce, codeStart, codeEnd, codeSize) {
while (iteration < 2500000)

{
checksum[@] += nonce;
checksum[1] ~= DP;
checksum[2] += *DP;
checksum[4] ~= EIP;
mix(checksum);
nonce += (nonce*nonce) | 5;
DP = codeStart + (nonce % codeSize);
iteration++;
}

MITRE



30

Simplified Selfcheck() Forgery

Selfcheck _forge(checksum, nonce, codeStart, codeEnd, codeSize) {
while (iteration < 2500000)

{
checksum[@] += nonce;
checksum[1] ~= DP;
if (DP == myHookLocation)
checksum[2] += copyOfGoodBytes;
else
checksum[2] += *DP;
checksum[2] += *DP;
checksum[4] ~= EIP;
mix(checksum);
nonce += (nonce*nonce) | 5;
DP = codeStart + (nonce % codeSize);
iteration++;
}

MITRE



Trusted Platform Module (TPM) 4
Timing Implementation (BIOS Boot-Time)

Server Client TPM

BOOT Request Tickstamp(hardcoded)

—_— -

igned Tickstamp 1

e—
— At
Self-Check (nonce = signature)

Request Tlckstamp(Self—Checksum)
— |

Time
_

signed TickstamP 2

1

Signed Tickstamp 1 &2 >Separate agent requests stored
Self-Checksum measurement, and sends to server
for verification

Ve v v

MITRE



BIOS Chronomancy — attacker overhead vs. clean measurement
18 E6400s, 20 measurements, 3 different loop iteration counts

3000

2500

2.5M Iterations Data

2000

TPM Ticks 1500

A r's a
1000 1.25M Iterations Data
. o . N B m : A _ . ~ R B B » M
e E £ B R B ¥ E B = B !: = : x X X T B
500
X o © & A 625K Iterations Data
B e e g B p e g8 BB g R B R B
b3 _— = - o o =~ ke - e = = o b - nr _— = b3 F 3 T 1
) 2 4 6 8 10 12 14 16 18 20

Measurement Number

Takeaway: If you only do 625k iterations, occasionally the attacker wins.
With 1.25M or more the attacker doesn't even get close.



|33 |

Is BC perfect? NOPE!

4GB

SPI Flash

Self-check
Done

MITRE



34

Conclusion

" There is a paper from CMU named VIPER specifically on
attesting peripheral firmware. We will play with malicious
peripherals & TOCTOU attacks this coming year.

= Trusted Computing implementations always need independent
review. It's ironic that they're overwhelmingly closed source &
proprietary. (Even academics don't usually post their code for
review!') We don't want to get a 2.5% measurement and be lead
to believe it's a 100% measurement.

= As long as the SRTM is implemented in writable firmware, ticks
and fleas will mean that you can't trust your SRTM.

— And as ITL has shown, DRTM can depend on SRTM

1 Our code for our previous self-check is at http://code.google.com/p/timing-attestation

We're working on getting the modified self-check for BC public released too. = MITRE



35

Conclusion deux!

" We need more people working in this space!

" You should try your hand at making and breaking
timing-schemes.

" It's obviously a very challenging and cool problem!

= Contact us for a private copy of the much more detailed
whitepaper (still under submission for an academic conference)

= jbutterworth, ckallenberg, xkovah @ mitre.org

= P.S. To learn more about TPMs go to OpenSecurityTraining.info

MITRE



36

References

= [1] Apokrif. Dell bios, how to decompose/mod, 2010. http://
forums.mydigitallife.info/threads/12962-Dell-bios-how-to-
decompose-mod./page48

MITRE



37

Backup slides

MITRE



E6400 PCR[1-3]

38

hexadecimal value index | TCG-provided description
Se078afa88ab65d0194d429¢43e0761d93ad2f97 | 0 S-CRTM, BIOS, Host Platform Extensions,

and Embedded Option ROMs
a891b8I88¢caa9590e6129b633b144a68514490d5 | | Host Platform Configuration
a89fb8f88caa9590e6129b633b144a68514490d5 | 2 Option ROM Code
a891b8188caa9590e6129b633b144a68514490d5 | 3 Option ROM Configuration and Data
S5df3d741116ba76217926bfabebbd4eb6de9fech | 4 IPL Code (usually the MBR) and Boot Attempts
2ad94¢d3935698d6572bad715¢946d6dfecb2dSS | 5 IPL Code Configuration and Data

PCRs 1-3 should contain configuration and option rom

measurements.

Interesting because they are duplicate values.
We had also seen this a89fb8f... value on other (non-E6400)

systems.

PCR[1..3] = SHA1(0x00,, || SHA1(0x00))

MITRE



39

Conditions for TOCTOU

= 1) The attacker must know when the measurement is about to
start.

= 2) The attacker must have some un-measured location to hide in
for the duration of the measurement.

= 3) The attacker must be able to reinstall as soon as possible
after the measurement has finished.

= |t turns out a bunch of the example attacks in the literature are
TOCTTOU without being explicit about it.

= And it turns out TOCTOU more severely undercuts the
technique than prior work had acknowledged

MITRE



40

BIOS Modification: Access Controls

BIOS_CNTL—BIOS Control Register
(LPC I/F—D31:F0)

BIOSWE can “always” e . BT
be set to make the flash T e

Top Swap Status (TSS) — RO. This bit provides a read-only path to view the state of

L] L]
Ch I erteable R/W N the Top Swap bit that is at offset 3414h, bit 0.
p SPI Read Configuration (SRC) — R/W. This 2-bit field controls two policies related to
BIOS reads on the SPI interface:
Bit 3- Prefetch Enable

attributes!) T

Settings are summarized below:

Bits 3:2 Description
No prefetching, but caching enabled. 648 demand reads load

] 3:2 00b the read buffer cache with “valid” data, allowing repeated code
BLE, however provides o ot e
b No prefetching and no caching. One-to-one correspondence of
01b host BIOS reads to SPI cycles. This value can be used to invalidate

SMRAM the final say as o Maima s ki it i v ks

sequences of short reads to consecutive addresses (I.e., shadowing).
11b Reserved. This is an invalid configuration, caching must be

to whether or not writes e

BIOS Lock Enable (BLE) — R/WLO. \)

0 = Setting the BIOSWE will not cause SMis.

L ]
to ‘th e fI aS h WI I I be . 1 = Enables satting the BIOSWE bit to cause SMIs. Once set, this bit can only be

10S W —

- 0 = Only read cycles result in Firmware Hub I/F cycles.
e rl I I I e 0 1 = Access to the BIOS space Is enabled for both read and write cycles. When this bit is
" written from a 0 to a 1 and BIOS Lock Enable (BLE) is also set, an SMI# Is

\w This ensures that only SMI code can update BIOS.

E6400 version A29 didn't set BLE, A30 did

MITRE




41

Coming Soon:
Copernicus — “Question your assumptions”

= We have a nice standalone tool
" It dumps BIOS to file

= It checks configuration registers to see if the BIOS/SMM is
writable

= We’re interested in investigating the prevalence of unlocked
flash chips

= Contact us

MITRE



