WHO’D HAVE THOUGHT
THEY’D MEET IN THE MIDDLE?

“ARM Exploitation” and “Hardware Hacking”
convergence memaoirs

http:// www.dontstuffbeansupyournose.com

Stephen A. Ridley

NoSuchCon Paris 2013

A bit about me...

Run a blog with Stephen C. Lawler

www.dontstuffbeansupyournose.com

Who Are We? (Ridley)

. Currently: Principal Accipiter Research

. Previously:

e Chief Information Security Officer (at a bank), Senior Consultant
Matasano

e Senior Security Researcher McAfee (founded Security Architecture Group)
 Kenshoto Founder, CSAW CTF Judge (Reverse Engineering)

e Guest Lecturer/Instructor (New York University, Netherlands Forensics
Institute, Department of Defense, Google, et al)

e Author of several upcoming books (“Android Hackers Handbook”
September 2013 Wiley & Sons)

Who Are We? (Lawler

MakeAGIF.com

Who Are We”? (Lawler)

Currently: Independent Security Researcher,
Software Developer (Bits And Data Associates)

Previously: Principal at Mandiant, Principal at
Man'Tech

Not originally a security guy, used to program Sonar
systems for the Navy

Specializing in research, Kernel development,
Kernel internals and Advanced Software
Exploitation

Talk Outline

How did we get started with this stufl?

“Hardware Hacking for Software People” (ReCon Montreal
2011, SummerCon New York 2011)

Developing the “Practical ARM Exploitation” training
Building ARM exploitation development environments
“Advanced ARM exploitation techniques”

e ROP on ARM

e Stack Flipping

Our neat new research (hardware techniques, USB and bus
fuzzing, our newest work: The “Osprey” hardware device)

Talk Outline

e Some of this talk given at Breakpoint
2012, and Infiltrate 2013

¢ “Hardware Hacking for Software

People” (ReCon

Montreal 2011,

SummerCon New York 2011)

® Some complete

not release pub.

v new research we will

icly (some new stuff for

NoSuchCon Paris 2013)

How 1t all started...

AWA INf HEX TH/ DS# ITY
BEFC IPL WG RFAD EHE [H

rNw v ETY oAU Thors o0unacd

FOR IMPORTANT INFORMATION

ABOUT YOUR HEALTH AND SAFETY

ET AN EXTRA PY FOF R REGOM. GO OMUNE AT

mysteries w your | fe

83102539417

Chips speak to each other
with standard protocols!

Simple standard serial protocols are often used!
YOU MEAN TO TELL ME CHIPS USE SERIAL!? YES!!
RS-232, i2c, spi, Microwire, etc

e Serial comms have low pin-counts (some as low as one
wire)

e Found in: EEPROM, A2D/D2A convertors, LCDs,
temperature sensors, which means EVERYTHING!

Parallel: (hardly ever) requires 8 or more pins.

Where we found these
hardware interfaces.

What Uses it?

Analog to Digital Convertors. Found in:

e Dbatteries, convertors, temperature monitors

Bus Controllers. Found in:

e telecom, automotive, Hi-Fi systems, in your PC, consumer electronics
Real Time Clock/Calendar. Found in:

e telecom, consumers electronics, clocks, automotive, Hi-Fi systems,
PCs, terminals

LCD/LED Displays and Drivers. Found in:

e telecom, automotive, metering systems, Point of Sales, handhelds,
consumer electronics

Dip Switch. Found in:

¢ telecom, automotive, servers, batteries, convertors, control systems

How I’'ve found it useful:

e Routers

e BlackBox Hardware Pen'Tests
e HDMI (HDCP protocol)
e VGA (DDC/CI protocol)

e EEPROM
AO []1 \/ ,
A1[]2 3
A2[]3 g
Vss [|4 =

on cadblemodem in the

NN
\«Sfate}hat ,uses A" Broadcoms4"

&/

SARidleys—MacBook;Air:Desktop sa’7$./thing.py

——Return—-

> /Users/sa7/Desktop/thing.py(11)<module>()->None

-> import pdb; pdb.set_trace()

(Pdb) print thang
Value'246'0

MemSize:l .l'llll.llll'lllllll.'lll..

Flash' 'detected'

Signature:'

Broadcom'
Build' 'Date:'’
Build' 'Time:'

Image' '1°'
' ‘Signature:’
' ‘Control:’
' 'Major' 'Rev:
' 'Minor' 'Rev:
" 'Build' 'Time:
" '"File' 'Length:
Load' 'Address:'
' 'Filename:"’
' "HCS: '
' '"CRC:'

Image' '2°'
' ‘Signature:’
' ‘Control:’

'aB806

'BootLoader’
lAprl
'17:54:32

‘Program’

‘Program’

'8M
'@0xbe000000

Logs of it booting!!!

ECOS Real Time Operating System!

'Version:' '2.1.6d'

'29' '2004

'Header:
'a806

'0005

' '0400

' 'o4ff

' '2004/5/8' '04:33:27' 'Z
' '756291' 'bytes
'80010000
'ecram_sto.bin
'440a

'90cc24e0

'"Header:
'a806
'9005

'releade’

'Gnu

' 'eCos' '-!
Init'
Init'
Init'

'hal_diag_init
‘device' /dev/ttydiag'
"tty' 'channel:' '802cdbb8
‘device' /dev/tty@'

Init' 'tty' 'channel:' '802cdbd8
Init' 'device' /dev/haldiag'
HAL/diag' 'SERIAL' 'init
Init' 'device' /dev/ser@'
BCM' '33XX' 'SERIAL' 'init'
Set' 'output' 'buffer' '-' 'buf:'
Set' 'input' 'buffer' '-' 'buf:'
BCM' '33XX' 'SERIAL' 'config
‘255"
Reading'
Checksum'
Settings'

'fffee
'802f b8
'80300380"

'-' 'dev:'

"non-v
'@xb

'Permanent'’
"for'
'were'

‘'settings' 'from'
‘permanent’ ‘settings:’
‘read' 'and' 'verified.

After tuzzing, the bugs begin to
show!

ro/zero=00000000' 'rl/at' '=00000000' 'r2/ve' ‘'=ffffffff' 'r3/vl' '=801f965c

r4/a0' '=00000010' 'r5/al' '=00000000' 'r6/a2' '=801f9adc' 'r7/a3' '=801f9c88
r8/t0' '=80549184' 'r9/tl' '=00000002' 'rl@/t2' '=36313733' 'rll1/t3' '=37303030
ri2/t4' '=00281f40' 'r13/t5' '=ffffffff' 'rl4/t6' '=FfFfffff' 'ri5/t7' '=801f965c

ri6/s@' '=807ee210' 'rl7/sl1l' '=00000000' 'rl8/s2' '=80300000' 'r19/s3' '=80300000

r20/s4' '=80549184"' 'r21/s5' '=80555b00' 'r22/s6' '=11110016"' 'r23/s7' '=11110017
r24/t8' '=0028e550' 'r25/t9' '=ffffffff' 'r26/k0' '=805548a8' 'r27/kl' '=00000000
r28/gp' '=80554808' 'r29/sp' '=80554880' 'r30/fp' '=80555f80' 'r31l/ra' '=80022674
PC' ":' 'O0x80022674' ‘error' 'addr:' '0x80022650

cause:' '0x807ee210’ ‘status:’ '0x1000fc00

BCM interrupt enable: fffffff7 status: 0@000‘@0 ras h es MBS
entry' '800225f0' ‘called' 'from' '801fd150 .

entry' '801fd0o54' ‘called' 'from' '8@1faca4d n th H I I P
entry' '801fac9c'’ ‘called' 'from' '80138098 I e

entry' '80138064' ‘called' 'from' '80135964

entry' '801358f8' ‘called' 'from' '80137cb8

entry' '80137c54' ‘called' 'from' '801fbea8 thtt d
entry' '801fbe98' ‘called' 'from' '801fbb7c S e rve r

entry' '801fbb58' ‘called' 'from' '801fbed8

entry' '801fbec8’ ‘called' 'from' '80205ae4

entry' '80205ad4’ ‘called' 'from' '8001037c

entry' '80010358' 'Return' 'address' '(00000 "invalid' 'or' 'not' 'found.' 'Tra

Task:' 'tHttpd ‘.\ o o o

o Bug-in-built-in HTTP server.
. 'Ox

Handle:' '0x807ee210 Stack Overflow... MIPS

Set' 'Priority:' ‘29

“““ BPornstesttyt ton exploitation

Now that we have
crashes”? What next?

Time to get good at
Reverse Engineering
ARM and Exploitation.

My machines are x30,

where do we start with
ARM?

untitied Folder

 1239) W

055 LrtcTwl _riC: setting sustem clock
)88562] Freeing init memory:

6 FII' St Lab:

4
] New USB device found, idvVend
| i USB device strings: MNfrs
4.108673) usb 2-1: Product: QEMU USB Keyboard

q 2=1: Manufacturer: QEMU 0.15.5(¢

4 2-1: SerialNumber: 42

4.180389] input: QEMU 0.15.50 QEMU USB ¥Keyboard

| 4.197326) generic-usb 0003:0627:0001.0001: inpu
0=1/inputo
Loading, please wait...
[5.316955]) udev([669): starting version 167
Begin: S r .o done,
Begin: Running s/scripts/init-premount ... done.
Begin: Mounting root file system ... Begin: Running
gegin: Running /scripts/local-premount ..., done.
| 12.225250) EXT4-fs (mmcblkOp2): mounted filesust
Begin: Running /scripts/local-bottom ... done.
done.
Begin: Running s/scripts/init-bottom ... done,
Last login: Mon Oct 24 18:35:30 UTC 2011 on tty02
root@user-Studio-XPS-435T-9000: ~fovero-my-nano NulLunu-tJ Linaro 11.09 (development branch) (ﬁNU'
4.024627) Console: switching to colour frame buffer device 128x48
4.061676) regulator init complete: VDAC: incomplete constraints, leaving on * Documentation: https://wikl.linaro.org/
4.065795] twl rtc twl rtc: setting system clock to 2011-10-24 18:34:51 UTC "'I’Z';I'lt"?ll"ﬁ""LI'—“?r 0¥ x;:':;:"f;s:Y NPT
1319481291) ethu 1INk encap:ethernet 3 ar 5235 S‘.'.'Z _'
.088562) Freeing init memory: 320K TRt St PSS e it
.107360) usb 2-1: New USB device found, idVendor=0627, idProduct=0001 et Eimmie i e Timerd 2
.187971) usb 2-1: New USB device strings: Mfr=1, Product=4, SerialNumber=5 RY p;l.;{kfﬁl'_f,&r:.r ~-lﬁp;u-f .~;m3y~s
.108673) usb 2-1: Product: QEMU USB Keyboard " 5d;_;£:;E; ;',&r;;{ j,]bb;d;; ;;&rrurj;
.189252] usb 2-1: Manufacturer: QEMU 0.15.50 collisions:0 txaueuelen:1000 i
.109649] usb 2-1: SerialNumber: 42 R¥ buytes:2399 (2.3 KB) TX bytes:1823 (1.8
.180389] input: QEMU ©.15.50 QEMU USB Keyboard as /devices/platform/usbhs- Interruot :80)
.0/ohci-omap3.0/usb2/2-1/2-1:1.08/input/input2
4.197326) generic-usb 0003:0627:0001.0001: input: USB HID v1.11 Keyboard [0 1o Link encap:Local Loopbach
EMU ©.15.50 QEMU USB Keyboard] on usb-ohci-omap3.6-1/inputé inet addr:127.0.0.1 Mask:255.0.0.0
| 5.316955) udev[669]: starting version 167 ineté addr: ::1/128 Scog
[12.225250) EXT4-fs (mmcblkOp2): mounted filesystem with ordered data mode. 0 UP LOOPBACK RUNNING NTU:16436 Metric:1
pts: (null) RX packets:0 errors:0 dropped:0 overruns:(
fsck from util-linux-ng 2.17.2 ™ packets:0 errors:0 nfﬁnppd:f overruns: o
rootfs: clean, 17473/259072 files, 203698/1035264 blocks colllslons:0 txgueuelen:o

Last login: Sun Oct 23 62:42:45 UTC 2011 from user-studio-x

Using QEMU we got familiar with
ARM:

e (ot comfortable with GDB
e We got familiar with ARM architecture and idiosyncracies

e We developed our techniques and tools for writing
Assembly Code and Shellcode on ARM

e We got familiar with how Interactive Disassembler (IDA)
examined ARM binaries

We wrote vulnerable apps and
developed our exploitation
techniques

e Basic Stack Overflows

e Stack Overflows with Return-To-LibC

e Stack Overflows with “No Execute Stack” (XN)
e Advanced Stack Overflows with XIN

e Heap Overflows

e Heap Overflows with “No eXecute (XN)” protection

But we wanted

more...we wanted real
hardware ARM!

Finding a hardware ARM
Plattorm

e Almost every cellphone is ARM!
e Android phones are little ARM linux computers
e None of these systems are “Developer Friendly”
e We can not easily run our many tools on them:
e Janguages like Lua and Python
e shells

e GNU Utilities, compilers, etc.

Finding a “developer friendly”
hardware ARM Platform

e There are many “open” ARM platforms:
e Raspberry Pi
e BeagleBoard
e ARMini
e (CuBox, etc

e We tried many many systems, and ran into many
many problems with building custom Linux
distributions with adequate hardware support.

Finding a “developer friendly”
hardware ARM Platform

e After a lot of trouble, we decided on GumStix platform, it
met our needs the best (although slightly expensive :-)

L C () www.gumstix.com = % —
S @
g“mStlx dream, design, deliver™
Al &= " CC :ﬁ B Like
Home Products Pricing Support Software Community £ Search Developer Center »

computing by gumstix designing with gumstix news pressreleases about

HamiltonJet Offers Superior Propulsion Technology

gumstis”

- - 2\ e At)
W

Communications

Education

Energy
» Instrumentation J ! - ; 23 .
Remote Data Collection A= g X i . - - :

Robotics o e | . B Learn More)
f o y {
Transportation : ' e & B) 4

Dream, Design, Deliver: Gumstix Overo COM for development,
proof of concept and production of waterjet electronic control product

Moving from emulation to “bare
metal hardware” development

e Ported the exploits, shellcode, and payloads to our new
hardware platform.

e Updated the Linux distribution image MANY times for “remote”
access

Moving from emulation to “bare
metal hardware” development

e We collected all of our exploitation tests and exploits into a
single image we could use for reference.

'® 0O root@linaro-nano: ~ — ssh — 114x50

7:rim arm sa7$ ssh root€10.0.0.106 8
root€10.0.0.106's password: -
Welcome to Linaro 11.09 (development branch) (GNU/Linux 3.0.0-1004-linaro-omap armv7l)

* Documentation: https://wiki.linaro.org/
Last login: Sat Sep 10 02:02:09 2011
root@linaro-nano:~# cat /proc/cpuinfo

Processor : ARMv7 Processor rev 3 (v7l)

processor t 0

BogoMIPS t 493.67

Features swp half thumb fastmult vfp edsp thumbee neon vipv3 tls

CPU implementer 0x41
CPU architecture
CPU variant

CPU part

CPU revision

0x1

The Lab Exercises

Hardware : Gumstix Overo
Revision : 0000
Serial : 0000000000000000

root@linaro-nano:~#¥ uname -a

Linux linaro-nano 3.0.0-1004-linaro-omap #5~ppa~natty-Ubuntu SMP PREEMPT Mon Aug 22 08:44:20 UTC 2011 armv7l armv?
1 armv7l GNU/Linux

root@linaro-nano:~¥ ls

labs

root@linaro-nano:~# 1ls -alt labs/

total 76

drwxr-xr-x 2 root root 4096 2012-02-27 21:02 basics_5
drwxr-xr-x 2 root root 4096 2012-02-27 21:02 basics_4
drwxr-xr-x 2 root root 4096 2012-02-27 21:02 basics_3
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 advanced_stack_xn
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 custom_ rop_fullrootshell
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 multi_heap_lab
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 multi_heap_ lab_xn
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 multi_heap_ lab_xn_aslr
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 restore_harness
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 simple_heap_unlink
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 simple_heap wmw
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 simple_stack
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 simple_stack_xn
drwxr-xr-x 19 root root 4096 2012-02-27 20:58 .

drwxr-xr-x 2 root root 4096 2012-02-27 20:58 basics_1
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 basics_1b
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 basics_2
drwxr-xr-x 8 root root 4096 2012-02-27 20:58 bindshell

?

root root 4096 2012-02-27 18:45 ..

Word got out...

e Contacted by:

e Companies that needed training on ARM
exploitation

e Companies that needed ARM reverse engineering
and software exploitation work

e many others with products (vested interest) in
understanding ARM exploitation

So we did a few contracts:

Penetration testing of many “black box devices”:

e Smart Power Meters, “Set top boxes”, new experimental
devices, new “secret” mobile devices from cellphone
manufacturers

We privately have developed techniques for exploiting
software running on ARM

Wrote exploits for all the above (Android, Windows 7
Mobile, Linux, etc)

Developed course material to get this information out.

Developing the Course:

e Prepared our techniques so that we could publicly release
them:

¢ Finding new ROP gadgets on our custom ARM Linux
distribution and Android.

e Developing “user friendly” software exploitation examples.

e Developing “Rop Library” (with examples) which includes
35+ gadgets to build payloads with.

e “Filled in the Blanks” with additional information on IDA,
GDB, linking and loading, shellcoding.

What’s in our course:
3 to b Days

650 - 900 Slides in (15 lectures)

20 “Hands On” exploitation exercises on the ARM
hardware

100 Page Lab Manual with Lab Exercise questions and
detailed notes

ARM Microprocessor Architecture Notes

Many tools developed by us (C and Python libraries/
programs) to assist with reversing and exploitation,

What our course teaches for
LLinux and Android

e How to reverse engineer ARM binaries with IDA (IDA bugs)
e Debugging ARM binaries with GDB

e Exploiting Stack Overflows

e Defeating Stack Overflows with “No Execute Stack” (XN)

e Exploiting Advanced Stack Overflows with XN

e [Exploiting Heap Overflows

e Heap Overflows with “No eXecute (XN)” protection

e Defeating ASLR

The Course Listing

How to reverse engineer ARM binaries with IDA (IDA bugs)
Debugging ARM binaries with GDB

Exploiting Stack Overflows

Defeating Stack Overflows with “No Execute Stack” (XN)
Exploiting Advanced Stack Overflows with XN

Exploiting Heap Overtlows

Heap Overflows with “No eXecute (XN)” protection

Defeating ASLR

How the course has been going:

e We are AMAZED. A course like this has never been offered
e [t sold out at Blackhat in the first two weeks.

e [t SOLD OUT at CanSecWest 2012.

e [t SOLD OUT at Blackhat Las Vegas 2012.

e MANY requests for private engagements of the course.

| ®
=

O 6 £3L ARM Exploitation Tokyo: © X

(& dontstuffbeansupyournose.com/2013/02/03/arm-exploitation-tokyo-hacking-in-the-land-of-the-rising-... () .;" Q;j 'u

GitHub Talks & Trainings Books & Publications About

Don't Stuff Beans Up
Your Nose

Nerdy things...

ARM Exploitation Tokyo: Hacking in the
Land of the Rising Sun

Posted on February 3, 2013 by s7ephen

Tn mid ani1a wa ranaivad an amail feam cavaral fallbe in Tanan aclking ne ifwa intandad +a heine Aane S A DM

Subscribe: RSS feed

Pages

About

Books & Publications
GitHub

Talks & Trainings

I

Top Posts & Pages

Upcoming for 2013

: »»‘

7’
L)
(RN

Hardware Hacking for
Software People

-
&

| 2

About

Y

4l |

&

i

. ® 006) ARM Exploitation: Switzer x

[X dontstuffbeansupyournose.com/2013/03/21/arm-exploitation-switzerland/ D O .&

GitHub Talks & Trainings Books & Publications About Subscribe: RSS fee

Don't Stuff Beans Up ages

About

Your Nose ook & ublatons

Nerdy things... GitHub
Talks & Trainings

ARM Exploitation: Switzerland

e

Posted on March 21, 2013 by slawlerguy 1

Top Posts & Pages

Upcoming for 2013

Hardware Hacking for
Software People

About

What does all this
research and the
popularity of our course
teach us?

We are in the “Post PC”
threat environment.

The world is changing...”The Post-PC
Exploitation Environment”:

e Why would hackers bother with your PC when there is a
GPS tracking device connected to a microphone always in
your pocket?

e We trust our phones and mobile devices more than our
computers and attackers know this.

e ARM Exploitation is fun and much easier than people think.

e Bugs are being found in everything from SMS messages in
your iPhone to the DVR you watch Netflix on. All of these
devices use ARM processors

Some Interesting Bits
from the Course:

Some Interesting Bits

from the Course:

ROP on ARM
(defeating XN, code-signing, et al.)

v Why bother with ROP?

—“Execute-Never”

— Allows virtual addresses to be marked with or without execute
permission

—If the CPU ever attempts to fetch an instruction from a virtual
address without execute permission, it raises an exception
(typically, delivers SIGSEGV to the offending process)

—Therefore, an exploit must direct PC towards valid executable
addresses

 Virtual address is marked executable by the operating system
* Address must contain valid ARM/THUMB machine code

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

Why bother with ROP?
» Code-Signing

—Some platforms verify that executable memory
segments contain a valid digital signature

—Measure is primarily a method of protecting
revenue stream for application stores

—Therefore an exploit must redirect PC to valid
executable addresses

« [t is not possible to have a “retZ2libc” attack that calls
“mprotect()” or equivalent to re-protect virtual
addresses with executable page permissions

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

ROP: General Technique

« General technique

— Find a number of “gadgets”

« A few instructions, ending in an indirect branch (pop {pc}, blx r3, etc)

« Typically, obtains values and branch targets from memory relative to SP
— Place these gadgets, one after the other, onto the call stack

» Such as via stack overflow vulnerability

— The “gadget chain” will constitute a computer program (a “return-oriented”
program)

— Profit!

» Allocate writeable, executable memory and copy shellcode into it

Re-protect existing virtual address space as executable and jump into it

Create a socket, connect out, and establish a reverse shell

Read contents of contacts list and send it to a remote serve via HT'TP

Really, you can create just about any computer program by using lots of gadgets on the
stack

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

RetZlibc, Bouncepoints, and ROP

* One of our gadgets from early in the class:

Branches to a function

Initializes LR to return somew!

libc + 0x000918DC: POP {RO,R1,R2,R3,R12,LR};
BX R12

LLoads RO-R3 with values from

the stack

1€re

* On ARM, it’s really impossible to do any
ret2libc without the use of a “bouncepoint”
aka “gadget”

http://www.dontstuffbeansupyournose.co

Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

ROP: Example mprotect() call

» Goal: Use mprotect() to re-protect the

stack as executable, and jump into it

00000000 400b08dc POP {RO,R1,RZ2,R3,R12,LR}; BX R12
00000008 bdffd000 RO: Page-aligned stack address

0000000c 00002000 R1: Length to mprotect

00000010 00000007 R2: PROT_READ |PROT_WRITE |PROT_EXEC
00000014 deadbeef R3: Unused value for R3

00000018 400abf90 R12: Address of mprotect()

0000001c bdffd100 LR: Address of the stack

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

ROP: Example mmap() + memcpy/()
call

« Goal: Use mmap() to allocate writeable, executable
memory. Copy shellcode to this buffer. Jump to the buffer.

» Step 1: call mmap, with that gadget that is useful for

making function calls

« Step 2: call memcpy. It’s destination address should be the
buffer we just mmap’d, it’s source address should be the
contents from R6 (we know, via gdb, that R6 happens to
point to our shellcode buffer at time of exploit).

« Step 3: jump into the buffer

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

ROP: Example mmap() + memcpy()
call

« Goal: Use mmap() to allocate writeable, executable
memory. Copy shellcode to this buffer. Jump to the buffer.

« Step 1: call mmap, with that gadget that is useful for

making function calls

— WAIT! mmap takes 6 arguments, not just 4
— mmap(addr, len, prot, flags, filedes, ofl)

— We can’t just use R0O-R3 for its arguments!

« Step 2: call memcpy.

« Step 3: jump into the buffer

http://www.dontstuffbeansupyournose.com e
Stephen A. Ridley
Stephen C. Lawler E @
“Practical ARM Exploitation” BT

ROP: Example mmap() + memcpy()
call

« Goal: Use mmap() to allocate writeable, executable
memory. Copy shellcode to this bufter. Jump to the buffer.

« Step 1: call mmap, with that gadget that is useful for
making function calls

« Step 2: call memcpy. It’s destination address should be the
buffer we just mmap’d, it’s source address should be the
contents from R6 (we know, via gdb, that R6 happens to
point to our shellcode buffer at time of exploit).

— WAIT! How do we “pass” R6 as the “source” address for memcpy
(the 2rd grgument)? (How do we move R6 into R1? How can we
do so while ensuring RO contains the address returned by
mmap?)

. . httpy//www. dontstuffbeansupyournose.com
« Step 3: jump into the butl@fien . ridey ¢ 00° @

Stephen C. Lawler
“Practical ARM Exploitation”

ROP: Moving R6 to R1, without changing RO

 After searching and searching, we find the following
gadgets...

LDMIA.W R3S, {RO, R1, R2, R3}
STMIA.W R4, {RO, R1, R2, R3}
B.N 0xA82A4

libc + 0x000a82d2 0xA82A4:

MOV RO, R5
POP {R4, R5}
BX LR

STMIA.W R4, {RO, R1, R2, R3}
B.N 0xA82A4

0xA82A4:

libc + 0x000a82d4 Y 0, I

POP {R4, R5}
BX LR

ROP: Moving R6 to R1, without changing RO

 After searching and searching, we find the following
gadgets...

libc + 0x0001bd4c bOP (R4 15 K6, PO

LDR LR, [SP], #4

libc + 0x00035d1e ADD SP, #12

BX LR

libc + 0x0004c9cc POP (R4, PC)
libc + 0x000b31c8 POP {R3, PC)

libc + 0x0001£39c POP (PC}
libc + 0x000a6a40 MOV R3, RO; BX LR

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

ROP: Moving R6 to R1, without changing RO

« Step 1: Load a good return address into LR

« Step 2: Load a fixed memory address ALPHA+8 into R4
« Step 3: Load a good return address (POP {PC}) into LR
« Step 4: Save RO (mmap’d address) o the address at R4

« Step 5: Load a fixed memory address ALPHA into R3

« Step 6: Load a fixed memory address ALPHA into R4

- Step 7: Load/save R2 from the address at R3/R4 (effectively moving the old
mmap’d address into R2)

- Step 8: Move R6 into RO

« Step 9: Load a fixed memory address ALPHA+4 into R4

« Step 10: Save RO into the address at R4

« Step 11: Load a fixed memory address ALPHA into R3

« Step 12: Load a fixed memory address ALPHA into R4

« Step 13: Load/save R1 and R3 from the address at R3/R4
« Step 14: Move R3 into RO

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

...later that day...after
much toil...

(Some

time later)

400b08dd pop {r0-r3,rl2,1r}; deadbeef

00000000 4003ad4d mov rQ, r6; pop
00001000 4010052c¢

00000007 deafbeef

00000022 deadbeef

400abec0 mmap () 40054d1f ldr 1lr, [sp], #4;
400af78b add sp, #12; pop {pc} 4003e39d pop {pc}
ffffffff 41414141

00000000 41414141

00000000 41414141

40054d1f 1dr 1lr, [spl, #4; 400c72d5 stmia r4,
4003e39d pop {pc} 40100528

41414141 deadbeef

41414141 400d21c9 pop {r3, pc}
41414141 40100528

4006b9cd pop {r4, pc} 400c72d3 ldmia r3,
40100530 deadbeef

400c72d5 stmia r4, deadbeef

40100528 400c5a4l mov r0, r3; pop {pc}
deadbeef 4005e033 pop {r2, pc}
400d21c9 pop {r3, pc} 00000100

40100528 40075750 memcpy ()
400c72d3 ldmia r3, 400874bd bx r0

deadbeef

http://www.dontstuffbeansupyournose.com

Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

Uhhhh.......this 1s hard.

 This is getting a little complicated

« Manually stitching together “gadgets” onto
the stack is error-prone and confusing

* Is there a better way?

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

exploit_help.py

« Python classes to make it easier to construct return-oriented
programs

« 35+ ARM Linux Gadgets
—Loading General Purpose Registers
—Calling from registers

—All the gadgets you need to call virtually any function with
any number of arguments.

—Students use this to build write the payloads that defeat
ASLR, NX, for a full connect-back rootshell (on the last
day)

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

exploit_help.py: Example

* NEXT_GADGET

gc = GadgetChain ([
LOAD AND BRANCH TO LR(junk = ’A’*12),
RET () ,
LOAD R4 (r4 = 0x40020800),
SAVE SCRATCH REGS (r4 = Oxdeadbeef, r5 = Oxdeadbeef),
NEXT GADGET (),
WORD (0x40020800)

1)
exploit = exploit + gc.pack()

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

ROP on ARM Magic:

“Misaligned Instructions”
« Why don’t we have “POP (RO, PC}”?

« Because NOWHERE in the entire libc

binary does

exist. So we
R2, PC})”

this instruction sequence

had to settle for “POP {RO,

 But, take a look at the address of our POP
{RO, RZ, PC} gadget in IDA Pro

http://www.dontstuffbea
Stephen A. Ri dl y
Stephen C. Lawler
“Practical ARM Exploitation”

ARM has many

Instruction modes
Recent ARM processors (e.g., ARMv7) support a

number of instruction modes.

Like most RISC architectures, ARM instructions
are fixed width and must be properly aligned.

Mode determined by the high bit of the
instruction being executed. (TFlags $cpsr.t)

b b

This means “on the fly

stuffbe

68

ARM Mode

e 32-bit instruction fixed-width and alignment
 Generally the most “featureful” of instruction modes

e Transitioned into by executing the following
instructions that load the PC with the instruction set
selection bit (the low order bit) cleared: BX, BLX, LDR,
or LDM. As ofARMv7 this also includes: ADC, ADD,
AND, ASR, BIC, EOR, LSL, LSR, MOV, MVN, ORR,
ROR, RRX, RSB, RSC, SBC, or SUB.

69

THUMB Mode

16-bit instruction fixed-width and alignment

Slightly less functionality than ARM mode instructions
(e.g., many 16-bit instructions can only access RO-R7)

THUMB-2, introduced in 2003, allows for 32-bit
instructions aligned on 16-bits and greater functionality
when in THUMB mode

Transitioned into by executing the following
instructions that load the PC with the instruction set
selection bit (the low order bit) set: BX, BLX, LDR, or
LDM (aka POP). As ofARMv7 this also includes: ADC,
ADD, AND, ASR, BIG,.EQR..]JoL,.LSR, MOV, MVN,

eeeeeeeeeeeeeee

ORR; ROR, RRX, RSB, R&&~$BC, or SUB. 70

ThumbEE Mode

e Similar to THUMB mode, but contains various
extensions to support run-time generated code (JIT
code)

e Transitioned into or out of via the ENTERX and
LEAVEX instructions

Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

71

Jazelle Mode

e Allows for native execution of Java bytecode

e Transitioned into via the BXJ instruction

.dontstuffbeansu
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

72

ROP on ARM Magic:
“Misaligned Instructions”

-text:0008385082

.text:00038502 loc_38582 ; CODE XREF: _IO_vfscanf+41B6}j
.text:00038502 230 1E 70 STRB R6, [R3] ; Store to Hemory
.text:00038504 230 4F FO 060 6A MOV . W R16, #06 ; Rd = 0p2

.text:00038508 2306 D7 F8 88 98 LDR.W R9, [R7,H#var_s88] ; Load from Hemory
.text:0003856C 2306 FD F7 85 BD B.W loc_35F1A ; Branch

.text:00038510 S
.text:00038510

-text:00038510 loc_385106 ; CODE XREF: _I0 vfscanf+1A6CTj
-text:00038510 2306 4F EA 49 83 MOU . W R3, R9,LSL#1 ; Rd = 0p2

| text:000838514 230 B3 F5 88 7F CHP .U R3, #06x10868 ; Set cond. codes on 0Op1 - 0p2
.text:00038518 230 38 BF IT CC ; If Then

-text:0003851Aa 2306 4F F4 88 73 MOUCC .Y R3, #6x1608 ; Rd = 0p2

| don’t see a POP {RO, R2, PC} there at all

 But wait a minute:---

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

ROP on ARM Magic:
“Misaligned Instructions”

-text:00038502 loc_38502 ; CODE XREF: _IO_vfscanf+41B6}]j
.text:000838502 2306 1E 70 STRB R6, [R3] ; Store to HMemory

-text:00038504 230 4F FO 66 BA MOU . W R18, #8 ; Rd = 0p2

.text:000385088 236 D7 F8 80 90 LDR .Y R9, [R7,#var_s808] ; Load from Hemory
.text:0008385068 e e e e e e
.text:000838568C 230 FD DCB BxFD ;

.text:0003856D 238 F7 DCB BxF7 ; N

.text:00083856E 2306 85 pcB |5

.text:0003856F 238 BD DCB ©xBD ; +

.text:000838518 e e e e e e
.text:000838518

.text:000838518 loc_38518 ; CODE XREF: _I0 vufscanf+1Aa0CTj
.text:00038510 230 4F EA 49 63 MOU . W R3, R9,LSL#1 ; Rd = 0p2

-text:00038514 236 B3 F5 80 7F CHP .U R3, #6x180 ; Set cond. codes on Op1 - 0p2
.text:000838518 230 38 BF IT CC ; If Then

.text:0003851A 230 4F F4 80 73 MOUCC.W R3, #6x1688 ; Rd = 0p2

e [f we undefine the instruction at 3850C
we see the bytes FD F7 05 BD

* What’s “05 BD” in THUMB?

http://www.dontstuffbeansupyournose.com

Stephen A. Ridley 0
¢

Stephen C. Lawler
“Practical ARM Exploitation”

ROP on ARM Magic:
“Misaligned Instructions”

-text:000838502

-text:000838502 loc_38582 ; CODE XREF: _I0 vfscanf+41B6}]j
.text:000838502 236 1E 70 STRB R6, [R3] ; Store to HMemory

.text:00038504 230 4F FO 66 6A MOV . W R18, #8 ; Rd = 0p2

.text:00038508 2306 D7 F8 80 990 LDR.W R9, [R7,H#var_s88] ; Load from HMemory
.text:00038508 e e e
.text:00038560C 230 FD DCB 6xFD ; *

.text:0003856D 230 F7 DCB OxF7 ; N

.text:0003850E § ~mmmmmmme—me—e—————— 4o
.text:0003856E 230 65 BD POP {RO,R2,PC} ; Pop registers

.text:00038510 e e e e o e
.text:00038510

-text:080038510 loc_385186 ; CODE XREF: _I0 vufscanf+1A0CTj
.text:00038510 230 4F EA 49 63 MOV . W R3, R9,LSL#1 ; Rd = 0p2

-text:000838514 230 B3 F5 80 7F CHP.W R3, #6x166 ; Set cond. codes on Op1 - 0p2

* Wow, it’s POP {RO, R2, PC}!

 This is common in ROP, taking advantage
of addressing offsets to create
“unintended” opcode sequences

ww.dontstuffbeansupyourfose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

Some ROP Tricks we teach: #1

» Goal: Read or write from scratch space

 Problem: We don’t know what address to use for
reads/writes of memory.

« Solution: Just use a bukakheap’d address, or use
the .data/.bss section of libc.

—Specifically, the .bss section of libc ends at offset
Oxel1528 from the start of the binary

—But pages must be allocated as multiples of the
PAGE_SIZE (4096)

—Meaning 0xe1528 — 0xe2000 is perfect “scratch space”

http://www.dontstuffbeansupy

. . ‘ 1
as it is unused by libc Stepten A Ridey © @

Stephen C. Lawler
“Practical ARM Exploitation”

Some ROP ‘Tricks we teach: #2

» Goal: Move the value in R2 into R1 (or R3
into R2 or R1 into R3, etc.)

* Problem: There are no gadgets to move
values in volatile registers to each other.

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley

Stephen C. Lawler
“Practical ARM Exploitation”

Some ROP Tricks we teach: #2
— Use staggered

LOAD_R4: POP {R4, PC} scratch address to
Scratch Address -> R4 erte (for example)
SAVE SCRATCH REGS_BOUNCE -> PC R2

SAVE SCRATCH REGS: STMIA RA4..

— And then read from
that address minus 4,
thereby transferring
the value to R1

Scratch Address - 4 -> R4
deadbeef -> R5
LOAD R3 -> PC
LOAD R3: POP {R3, PC}
Scratch Address - 4 -> R3
RESTORE_SCRATCH REGS -> PC
RESTORE SCRATCH REGS: LDMIA R3..
deadbeef -> R4
deadbeef -> R5

Address of next gadget

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

Some ROP Tricks we teach: #3

* Goal: We want to write an ASCII string (or

other data structure that is not merely 4

32-bi
* Prob!

t words) to somewhere in memory

em: The gadget to write to memory

(SAV.
32-bi

W SCRATCH_REGS) only works with
t register values

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

Som

e ROP Tricks we teach: #3

* Goal: We want to write an ASCII string (or

other data structure that is not merely 4

32-bi
* Prob!

t words) to somewhere in memory

em: The gadget to write to memory

(SAV]
32-bi
e Solut

W SCRATCH_REGS) only works with
t register values

ion: Just use SAVE SCRATCH REGS

in exploit_help.py

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

Some ROP Tricks we teach: #3

mEER B RERRERR WL

48 45 4C 4C 4F 20 57 4F 52 4C 44 21 OA 00 00 0O
4C4C4548 4F57204F 21444C52 0000000A
RO R1 R2 R3

 Just visualize the data structure or string as individual byte values

« Convert those byte values to 32-bit numbers (remember, because of little-
endian encoding you have to do byteswapping when representing them as
numbers)

« Put the first 4 bytes into RO, as a little-endian number

« The second 4 bytes into R1, as a little-endian number

« Etc.

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

Some More Interesting
Bits from our Course:

ROP and Stack Overflows

* ROP - Return Oriented Programming
—Sequence of gadgets placed on the stack

—Takes advantage of existing opcode sequences
to bypass XN or similar technology to prevent
execution of stack/heap data

—Obviously applicable in stack overflows
* Overflow call stack with data
* Overwrite “Saved LR” with address of your first gadget

* Call stack contains a chain of gadgets that can be
returned to, one after the other, because it was placed
there by the overflow

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

ROP and Heap Overflows

* ROP - Return Oriented Programming

—Obviously applicable in heap overflows?

* Use WWW, WMW, vtable overwrite, etc. to execute
your first gadget

* Call stack contains ... a chain of gadgets?
—No, it won’t obviously, we are exploiting a heap overflow
—Our chain of gadgets or ROP is on the heap somewhere
—We have no control of the call stack at all!!

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

ROP and Heap Overflows

* ROP - Return Oriented Programming

—Obviously applicable in heap overflows?

* Use WWW, WMW, vtable overwrite, etc. to execute
your first gadget

* Call stack contains ... a chain of gadgets?
—No, it won’t obviously, we are exploiting a heap overflow
—Our chain of gadgets or ROP is on the heap somewhere
—We have no control of the call stack at all

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

What if there’s nothing on the
stack?

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

THE ANSWER: PIEVUTS!

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

What if there’s nothing on the
stack?

- If there is data we control on the stack we can
execute ROP with a heap overflow

* What if there really is nothing on the stack?

—Maybe we could copy data from the stack to the heap

« For example, our bouncepoint is a gadget that copies data from
R2 onto SP and then returns

 Doable, but consider your experience with gadgets. To do
something as simple as this usually requires several gadgets on
the stack, and we only control one function pointer

— Maybe we could move the address of the heap into SP and
return. That is, we have to “flip” the heap into becoming
the call stack

« Back when ROP was not a publicized technique, this was called
‘writing an exploit”
 Now we have a special name for it and it is called “pievutting”

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

ROP and Heap Overflows
(when nothing’s on the stack)

vuln calls oobj->virtual function

Call Stack Heap

Free Chunk(s)

SP

vuln frame VulnObject

overflow

OverwrittenObject

Free Chunk(s) * -
http://www.dontstuffbeansupyournos o
Stephen A. Ridley lpl ter
Stephen C. Lawler " L

“Practical ARM Exploitation”

ROP and Heap Overflows
(when nothing’s on the stack)

vuln calls some magical bouncepoint... and then we PWN?
Call Stack Heap

Free Chunk(s)

vuln frame VulnObject

overflow

OverwrittenObject

Free Chunk(s) *
http://www.dontstuffbeansupyournos o
T Stephen A. Ridley]plter
o ASSOCIATES Stephen C. Lawler "

“Practical ARM Exploitation”

Not so fast...

« AWESOME! So we can easily PWN heap overflows now!

 But...

—YOéI,I are probably never going to find MOV SP, RO in compiled
code

—Think about it, how often does a compiler move a register
into SP?
« Adding and subtracting to SP occurs all the time...

» ... only time you’d move a value into SP is to restore SP from a stack
frame register

 gcc (at least) almost always uses R7 for the frame register
« Unlikely that a volatile register like RO would ever be used for this
purpose
—What about “mis-aligned” instruction sequences?
« Could definitely get us the MOV SP, RO
« But, not in the libc.so binary on your QEMU VM’s...

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

Flipping R77?

* R7 as frame register?
—libc + 0x0004C652

e MOV SP, R7; POP {R4, R5, Ro6, R7, R8, R9, RI10,
PC}

—Restores SP from the “frame register” in R7

—But what if the function we’ve exploited
doesn’t have a frame register?

—If it happened to store “our data” in R7, we
could use this as our “pievut”

http://www.dontstuffbeansupyournose.com
S.A. Ridley S.C. Lawler

Flipping R77?

* Flipping R7 into SP

—Nice,

if R7 happens to point to some data we

control

—But t
on A

nink about it. There are FIFTEEN registers
RM. What is the likelihood R7 points to

our ¢
—We'd

ata’
rather be able to use RO as our pivot

because RO will always point to data we
control (at least for vtable overwrites)

http://www.dontstuffbeansupyournose.com
S.A. Ridley S.C. Lawler

Flipping RO?

* So we scan through libc looking for
“pievuts”’ and we eventually luck into...

—libc + 0004f94c

-text:0004F244 020 EO 1B SuBS RO, R4, R7 ; Rd = 0p1 - 0p2

-text:0004F946 020 81 23 MOUS R3, #1 ; Rd = 0p2

-text:0004F248 020 41 46 MOV R1, R8 ; Rd = 0p2

Jdext 0004FO4A 020 32 46 MOy R2. R6 . Bd = 0p2

Ltext:0004F94C 020 40 FO 30 E9 BLX mremap ; Branch with Link and Exchange (immediat
=) GLILIAY RA, RO R4 = OpZ

-.text:0004F952 626 BO F1 FF 3F CHP .U RB, #OxFFFFFFFF ; Set cond. codes on Op1 - 0p2
-text:0004F956 020 05 46 MOV R5, R8 ; Rd = 0p2

.text:0004F958 026 CF DO BEQ loc_u4F8FA ; Branch

.text:0004F95A 620 C4 19 ADDS R4, RO, R7 ; Rd = 0Op1 + 0p2

 Wait what???

http://www.dontstuffbeansupyournose.com
S.A. Ridley S.C. Lawler

Flipping RO?

* Let’s see what happens if the processor
executed that instruction in ARM mode

instead of THUMB...

-text:0004F944
-text:0004F944

loc_4F9uy

; CODE XREF: sub_uF8C8+38Tj

.text:0004F944 0620 EO 1B SUBS RO, R4, R7 ; Rd = 0p1 - 0p2
-text:0004F946 0626 681 23 MOUS R3, #1 ; Rd = 0p2

-text:0004F948 020 41 46 MOV R1, R8 ; Rd = 0p2

.text:0004F94A 820 32 46 MOV R2, R6 : Rd = 0p2

.text:0004F94C CODE32

.text:0004F94C 620 40 FO 30 E9 LDHDB RO?*, {R6,R12-PC} ; Load Block from Hemory
.text:0004F958 CODE16

.text:0004F950 620 680 24 MOUS R4, #8 ; Rd = 0p2

-text:0004F952 0620 BB F1 FF 3F CHP .U RO, #OXFFFFFFFF ; Set cond. codes on Op1 - 0p2
-text:0004F956 020 B85 46 MOV R5, R8 ; Rd = 0p2

.text:0004F958 0626 CF DB BEQ loc_4F8FA ; Branch

-text:0004F95A 020 C4 19 ADDS R4, RO, R7 ; Rd = 0p1 + 0p2

http://www.dontstuffbeansupyournose.com

S.A. Ridley S.C. Lawler

Flipping RO?

 Let’s spell LDMDB RO!, {R6,R12-PC} out

* |t means:
—LDMDB RO!, {R6,R12,R13,R14,PC}
—LDMDB RO!, {R6,R12,SP,LR,PC}

* Thank goodness for ARM/THUMB mode
switching!

http://www.dontstu fibeansupyournose .com
S.A. Ridley S.C. Lawler

+SP
LR
+ PC

OacC
0aC

eC
ec

0acl

eC

Flipping RO?

 What does LDMDB RO!, {R6,R12-PC} do?
—LDMDB - Load Multiple Decrement Before

—RO will be subtracted by 0x14 first and then
registers are loaded

*R6 loaded from original RO-0x14
*R12 loaded from original RO-0x10

from origina
from origina

from origina

RO-0x0C
RO-0x08

RO0-0x04

http://www.dontstuffbeansupyournose.com

S.A. Ridley S.C. Lawler

Flipping RO?

But what do we put in to SP?
What address to use?

http://www.dontstuffbeansupyournose.com
S.A. Ridley S.C. Lawler

Flipping RO?

But what do we put in to SP?
What address to use?

USE BUKAKHEAP!!

http://www.dontstuffbeansupyournose.com

ARM Exploitation meets
Hardware Exploitation

New Sh*t

(*DJ Clue voice®)

Intertacing with the
Hardware:
Debuggers and the
JTAG myth

INTLE

-

OOOOO
.

.....

N
N
AL
AN
&"

Hardware Challenges

Interfacing with custom hardware

i o

-
-

-
-
-
-
-
-
—

‘ ’l Lie.augmented

Applications

Support Sample & Buy

About My ST Logi

Contact

. Quick View

Design Resources Sample & Buy

STM32F207VG

STM32F207

All

Active

High-performance ARM Cortex-M3 MCU with 1 Mbyte Flash, 120 MHz CPU, ART Accelerator,
Ethernet

/

What is that!?

Lrngiesas BATT U S MIEUX weuLaL REQISIEr /7 LOgIn

I Search: | Enter Part No. or Keyword m mm My Parts (0 items)

one company » a world of innovation Contact Molex

Cable Fiber Optic Printed Circuit Industrial

Assemblies Products Products Products

Home: PCB Receptacles = Datasheet

Part Number: 52991-0308

0.50mm Pitch SlimStack™ Receptacle, Surface Mount, Dual Row, Vertical, 3.00 and 4.00mm Stacking Heights, Lower Circuit Size
Version, White, 30 Circuits

Status: Active %/ REQUEST SAMPLES
Series: 52991 |
CHECK DISTRIBUTOR INVENTORY
Category: PCB Receptacles '8‘
Overview: SlimStack™ 0.50mm Pitch .
H— Add to My Parts
Go to Part DetailV Email this page
Series Image - Reference only
Mates With Part(s): Application Tooling FAQ

Board-to-Board SlimStack™ Plug 53748, 53916, 501820

Tooling specifications and manuals are
found by selecting the products below.

Specifications & Other Documents: Sales Drawings,3D Models, and Brochures Crimp Height Specifications are then
a) contained in the Application Tooling

Datasheet Drawing (PDF) Specification document.

Product Specifications N

Packaging Specification SPK-52991-001.pdf o 3D Model

Pravinuelv Availahla Annliratinn

English BA® Tr=0 @fdsL Deutsch Register // Login

I Search: | Enter Part No. or Keyword m m My Parts (0 items)

one company » a world of innovation Contact Molex

Cable Fiber Optic Printed Circuit

Assemblies Products Products

Home: PCB Receptacles = Datasheet

Part Number: 54167-0308

0.50mm Pitch SlimStack™ Receptacle, Surface Mount, Dual Row, Vertical, 3.00 and 4.00mm Stacking Heights, Lower Circuit Size
Version, Black, 30 Circuits

Status: Active %/ REQUEST SAMPLES
Series: 54167 |
CHECK DISTRIBUTOR INVENTORY
Category: PCB Receptacles '8‘
Overview: SlimStack™ 0.50mm Pitch .
= Add to My Parts
Go to Part DetailV Email this page
Series image - Reference only
Mates With Part(s): Application Tooling FAQ
53916, 53748
Tooling specifications and manuals are
found by selecting the products below.
Specifications & Other Documents: Sales Drawings,3D Models, and Brochures Crimp Height Specifications are then
a) contained in the Application Tooling
Datasheet Drawing (PDF) Specification document.
Product Specifications N
- 3D Model

Previouslv Available Annlication

&%
g
N . . 4
0 tn ,}’"
'.‘On.'!n":
ot

o
A 0, ,'u"l,-

T.;.’_‘l‘.'u'-l
(VL AT
LA o
ottt
G G Tt
‘“.,'l..' 0
(.."o"" '
W ""' »
GGnw
w Gt

&
J"@O e
. VL)
ST a

'be0oo|
17833b |
8 00e |
17016b |
)00000|
\4b16b |
149 00e |
16813b |

|

s : TPIU fitted.

v] el e

[~ Cache reads
v Verify download

[v Init regs on start
Log output; Clear log

Reading 253 bytes @ address 0=x00002500 A

CPU IUnspecified, Halted 3.22Y Little endian /I

Read 3 bytes @ addre=ss 0=x000025FD (Data = 0x990322)
Reading 253 bytes @ address 0x2000FF00
Read 3 bytes @ address 0x2000FFFD (Data = 0=x0000BE)

Reading 253 bytes @ address (0=FFEFFFO00
WARNING: Failed to read memory @ address 0xFFEFFFO0
Reading 253 bytes @ address 0=x00000000

Read 3 bytes @ address 0x000000FD (Data = 0=x0000BE)

Reading 253 bytes @ address 0x00000100

Read 3 bytes @ address 0x000001FD (Data = 0xF2C203)

) . Reading 253 bytes @ address 0=x00002600
USDIVIDIENRIE Read 3 bytes @ address 0x000026FD (Data = 0x255ABF)
JLinkRemoteSer
JLinkRemoteSer ~
JLInkSTM32. exe
J-Link ARM V4.58a = =

21800088, APSR = 20000008, EPSR = 810800008, IPSR = 80000000
#80000AA, CONTROL = 6868, FAULTMASK = 6868, BASEPRI = 88, PRIMASK = 668
eCnt = 70093AAA
nk>go
nk>r
t. delayv; A pe ..

ttype NORMAL: Resets core & peripherals via SYSRESETREQ & UECTRESET
- Found Cortex—M3 ripl, Little endian.

n.,raTmnis * . | STITY . 1 ty I

nk)?eg

Unknown command. ’?’ for help.
-Link>rega
nknown command. ’?’ for help.
-Link>regs

1345]
R4
RS
R12

= 40088000, R1 2000BFF%4,. R2 40088088C,. R3 151515151515 151%

200887258, RS (515151517517 1% 1% R {3 AABBBA1LF,. R7? 1515151515 1%1515
22114A8C. R? AARBNBAA,. R1A= ABBBA34F. Rii1= 20007134
ABBBRBA4,. R13= 20BAFFCA. MSP= 20BOFFCA. PSP= 51968220

R14(LR> = #080BA19B,. R15(PC> = BAAABA25FA

KPSR
FBP

= 618800008, APSR = 6000AABA,. EPSR = 01000006, IPSR = A80BAAHBA0O
= ABABBAAA,. CONTROL = 668, FAULTMASK = 68, BASEPRI = 668, PRIMASK = 806

ycleCnt = 694E5C17
—Link>

Attacking the Hardware:
Stealing the Firmware

Sometimes you get
schematics...and
firmware source...

Most times you DON’T...

111111 0L

File Buffer

Device Option Project

Help

< L) ‘ 3
B-8 (€& e
Device ST STMS2F207VGRLGFP100 Flash100000H'S+0TP.200H'E 100Pins

[

Operation Option |

“\ Auto

"\ Program
' Read

I Uerify

"1 Blank_Check

Erase

i Option_Byte
1 OTP_Program
. OTP_Read

"L 0TP_Uerify
1 0TP_BlankCh

. OTP_Lock

Ready

Edit Auto

} Chacksumn OFFO0000H Fie =

Buffer

Dev. Info

Data Compare

Preparing...

ATHEL AT8SC20S51
Unmwatched adapter!
Algo: ATSSCXS1
iCheckaum: 0007FS800H
Ready.
ISuccess:0,Failure:0,Total:0.
iCount down : disabled.
Preparing...

ST STM32F207VGALQFP100
Algo: STH3zZzZ0X

Success: | o

-------------------- SUPERPRO programmer starts
Current time i=s 3/14/2013,15:19:30.

Failure: [0
Total: B

{ Reset)

< Device Information
General Information

Oowr

Manufacturer
Type :
Package :
Adaptor
Algoxrithm Na

Adaptor Information

ST
STM32F207VGELQFPL00
LQFP100
CX3043,Cx3021

me : STM3220X

1

The picture belov =how the correct position of the device in the
adaptor £ Top Viewid

socket of the

Count down: Disabled
Count Total: 0
Remains: B

[Reset Count Down }

File Buffer Device Option Project Help

X D) | =
-8 & e
Device ST STM32F207VGRLGFP100 Flash100000H'8+0TP.200H'E 100PIns
Buffer Checkeurn 0DE53CIBH File =

Operation Option | Edit Auto Dev. Config Dev. Infp———Data.C
i L] ea—
L R —— SUPERPRO § Edit Buffer
' Auto Current vime is 3/14/2013,15:19 |
= Preparing...
 Program ATMEL ATBSC20S51
Unmatched adapter! ADDRESS ~ HX AsciIr A
Read Algo: ATS9CXS1 00000000 E& 34 00 20 7D Fi 01 08-81 Fé 01 08 E9 8B 00 08 .4. }. O.. O...0. 3
Checkaum: 0007FS00H 00000010 89 F6 01 08 8D F6 01 08-91 F6 01 08 00 00 00 00 . .. g. g....
% Vorif Ready. 00000020 ©00 00 00 00 00 00 00 00-00 00 00 00 95 F6 01 08 ..vueevesvaanns (o]
: Y ISuccess:0,Failure:0,Total:0. 00000030 $% Fé 01 08 00 00 00 00-9D F6 01 08 CF AB 00 08 . g...... o...0.
~— lcount down : disabled. 00000040 AS F6 01 08 A% F6 01 08-AD Fé 01 08 Bl Fé 01 08 . o. B. B. o]
 Blank _Check [N 00000050 BS F6 01 08 BY F6 Ol 08-45 AR 00 08 51 AR 00 08 8.. Be..00..0
ST STM32F207VGALQFP100 00000060 SD AA 00 08 6% AR 00 08-75 AR 00 08 D1 Fé 01 08)..01..0u..0.. O .
Erase Algo: STH3220X 00000070 DS F6 01 08 D2 Fé 01 08-DD Fé 01 08 E1 Fé 01 08 . g. . g. o]
Ready. 00000080 ES F6 01 08 E9 F6 01 0B-ED F6 01 08 F1 F6 01 08 g. o]
; :Option TY [Reading ... 00000080 FS F6 01 08 F9 Fé 01 08-FD F6 01 08 81 AA 00 08 . 8. 8. 8...8 |
= Read OK 000000A0 0S5 F7 01 0% F7 01 08-0D F7 01 08 11 F7 01 08 0. 0. b4. ©
- 0'12765 elapsed 000000BO 15 F7 01 08 19 F7 01 08-1D F7 01 08 E9 78 o1 08 +. OF 8. B.x B
1 lay i. — - — -
' OTP_Program 000000CO F3 78 01 08 FD 78 01 08-07 79 01 08 63 BD 00 08 .x O.x Dey Dk..D2
. 000000D0 75 BD 00 08 C1 FB 00 08-CD FB 00 08 D9 F8 00 08 u..D...0...0...0e... ‘
OTP_Read 000000E0 Bl AR 00 08 49 F7 01 08-4D F7 01 08 51 F7 o1 08 ...0I. OM. Og. B
000000F0 55 F7 01 08 59 F7 O1 08-5D F7 01 08 61 F7 01 08 U)¢ o} Ca o]
 OTP_Verify
"1 0TP_BlankCh
. OTP_Lock
IAddress: 00000000H [checksmn: 0D653C9BH Buffer clear at IC Change
V| Buffer clear on data load
uffer range: 00000000H - OOOFFFFFH . -
[B g |Buffer save when exit
Locate \ Copy H Fill H Search H Search Next] Radix Swap
> |\ nah/<orp/ .
[Duplicate] OK
Success: |0 Count down: Disabled
Failure: |o Count Total: 0
Total: B Remains: B
Reset | Reset Count Down]

Ready

Pulling the Firmware

¢ Depending on the MCU you are pulling you will get:
e EEPROM image
e (Cramfs Filesystem
e Ext Filesystem
e [tc.

e “Bare Metal” Executable Image

Parsing executable images

e Some useful firmware analysis tools:

e Binwalk (https://code.google.com/p/binwalk/)

e [In my experience there will be some element of
manual analysis

e secarching for known bytes
¢ finding entry

e ocneral fighting with IDA

Building Custom
Hardware Interfaces:
(debuggers)

Copyright 2007-2011 f
Kineteka Systems, LLC
~N www.kineteka.com =

& N

. * e -,

PodGlzmo

Made in USA
S e . N P. . P O
r o, »,

™ o
4" 4T 4 4 w

. - - »
LA N7, LA Re ng

ESLeunsiueg i sPstar s

“ T'TA 390504 ~

- ‘ WO ORI Y ﬁ.b

® 00 ‘SWNBAS ONNIUDA
..nuioou wbu/dod

d}obbﬁtlilxs..l.

VN

'0. v'c'

J \

)

S eNlauy
wﬁukde

WO ENIFIUNY MMM
1002

M swash
0174

t

_.mmxocn vl.5

12 » m»mwowwwawmwm.ﬁ

LS

Building Custom
Hardware Interfaces:
Power

Cable Device

useA | T

USB mini
Pin ‘ Signal Color
1 VCC O
2 D- &
3 D+
4 GND il

Description

+HY
Data -

Data +

Ground

Pin Name Color

1
2
3

Description
VCC ‘Red +5V
D- White Data -
D+ ‘Green Data +
| .permits distinction of
Micro-A- and Micro-B-Plug
B none Type A: connected to Ground

Type B: not connected

GND Black Signal Ground

BK Precision 0-608mp="=

Lab Power Supply

~al

protocol analyzer

BK Precision 0-60Amp
» Lab Power Bupply

Spying On
Communications

More on this in our “Hardware Hacking

for Software People” talk.

: Stumb! X Ql SmartRF Protocol Packet © X | | g Customer Relationship - Texas SEGGER Microcontroller - X |:\ linux kernel serial Ox6d - (

ittps://www.google.com
Q Saleae Logic 1.1.15 - [Connected] - [24 MHz, 100 M Samples]

100 M Samples ¥ 24MHz ~ Start

¥ Measurement

B2
Period: =
Frequency: ###
I b2 2
T2: E=.= 3
| T1-T2 | =##

¥ Analyzers

BK Precision 0-608mp="=

Lab Power Supply

~al

protocol analyzer

~ - —— -

WO T e

WL o Ly P —

- ey A A
—— — ———— T -

 ———— — SO

e

File Edit Analyzer

View Help

EPH @& b

2.095 M8

¢ BHEHOODNDBE M

5 s ¢

Sp Index

mm
ww
DONDIO B WN O

nwumununuuouw

DD &
3

184
185
188
189
192
193
196
197
200
201
204
205
219

e el ke Fele Pl el et el tale faket <71 “TY “T1 N1 N N N === ==

(RO R RO R RGN R RGN R RO RORGEON RGN

X
w
«@

Text » |} LiveSearch

m:s.ms.us Len

0:00.000.000
0:00.000.000
0:00.000.476
0:06.349 444
0:06.362.417
0:06.362.826 12.8...
0:06.362.839 164 ..
0.06.553.535
0:06.555.623 395us
0:06.556.019 266...
0:06.582.630
0:06.584.633 11.8us
0:06.584 645 488. ..
0:06.633.529
0:06.636.529 143 .
0:06.780.207 5.50...
0.06.780.213 1.99. ..
0:06.782.212 175...
0:06.782.230 8.09...
0:06.790.329 225us
0:06.790.554
0:06.790.554 114 .
0:06.904 985 8B
0:06.905.052 125us
0:06.905.243 0B
0.06.905.302 250 us
0:06.905.634 8B
0.06.905677 375us
0:06.906.101 8B
0:06.906.177 125us
0:06.906.335 0B
0:06.906.427 114 .
0:06917.774 188B
0:06.918.052 375us

No filter: 16950 records.

Err Dev Ep Record

T

~ @@

05

&
8 8 8 8 8 8

05

« Capture started (Aggrega..
B <Host disconnected>

® <Manual Trigger>

B <Host connected>

B <Fyll-speed>

B <Reset> / <Chirp J> / <T...

B <Reset> / <Target disco. ..
B <| ow-speed>

B <Reset> | <Keep-alive> /
B <Reset> / <Target disco
B <| ow-speed>

B <Reset> /| <Keep-alive> /...

M <Reset> / <Target disco...
B <Fyll-speed>
B <Syspend>

M <Reset> / <Chirp J> / <T...

&# <Chirp K>
B <Reset> / <Chirp J> / <T

> ¢#[81 Chirp K-J pairs]

B <Reset>

B <High-speed>
€ [916 SOF]

» © SETUP txn

& [2 SOF]

> @ OUT txn

€ 3 SOF]

> @ SETUP txn

& [4 SOF]

> © SETUP txn

& [2 SOF]

> @ OUT txn

€ [93 SOF]

>) Get Device Descriptor

€2 [4 SOF]

Summary

[Frames: 211.x - 326.0]
A3 00 00 00 02 00
[Frames: 326.1 - 326.2)

[Frames: 326.3 - 326.5)
23 01 14 00 02 00
[Frames: 326.6 - 327 1)
A3 00 00 00 02 00
[Frames: 327.2 - 327.3)

[Frames: 327 4 - 339.0]
Index=0 Length=18
[Frames: 339.1 - 339.4]

04 00

00 00

04 00

+= 80E e

Protocol Lens: VUSB v

Command Line
24> save

I xHDetaIls

’»

Cannot execute action while a capture is running.

25> stop
Capture stopped.
26> =ave

Offset 0o 1
0x0000

2 3 4 5 6 7

Attacking the Software

Attacking the Software

REpurposing OlngOlSI PFI Port Forwarding
Interceptor

L . (S s A SRR ARM_V4583/S gy SEGGER J-Link GDB Server V4.58a - r
i ..000000000 Matasano PFI (Port Forwarding Interceptor) OO0000000... = :
5 THRSSSSS$5555555555555558588858555888568686 _J File Help
0000080688: 24 62 65 30 30 30 38 23 38 37 |$beBOOBHS7 | ¥ Locaho
GDB |Connec!ed to 127.0.0.1 Initial JTAG speed | 1000kHz ~ v| |~ Stayon
LKLkl] W Show lo
PO DD DD DDDDDDD DD DD DD DD DD DD DD DD DD DD D DD D2 JLmkICmmeded Current JTAG speed 1000 kHz v Generat
00000008: 2B +
. CPU [Unspecified, Halted 322V [Litte endian - | Eg:ﬁ[:ed'(
5 FBSSPISISIIPPIIIIIPFPIISSSSPPIIISSSPHSN] [Init regs
PO DD DD DD DDDDD DD DD DD DD DD DD DD DD DD DD D DD 2 Log output: eaiog
ij: 00000000: 24 6D 31 30 38 2C 66 64 23 66 34 |$m100, FditFy| Reading 253 bytes @ address 0x00002500
L Read 3 bytes @ address 0=x000025FD (Data = 0x990322)
DIODIIIDIIIIDIIIIDIIIIIIIIIIIIIIOIIIIOND Reading 253 bytes @ address 0x2000FF00
5 TTRSSSSS555555555555558558885888586886€€ 8¢ 5833A3 bgggsb@taddgeszdﬂxzﬂﬂgFgggFéggga = 0x0000BE)
Bgaggagg: 2B eadling vies al Iress b4
I WARNING: Failed to read memory @ address 0=FFEFFFO0
Reading 253 bytes @ address 0x00000000
< BSS5555955555555555555555555595555595958 Read 3 bytes @ address 0z000000FD (Data = 0x0000BE)
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLkkK(Reading 253 bytes @ address 0=00000100
g 000000068: 24 30 30 34 38 30 30 34 37 61 35 62 65 30 30 30 | $604800847a5be 860 | Read 3 bytes @ address 0x000001FD (Data = 0xF2C203)
$ 00000616: 30 31 30 62 35 30 35 34 63 32 33 37 38 33 33 62 | 816b5854c237833b| Reading 253 bytes @ address 0x00002600
0000008208: 39 30 34 34 62 31 33 62 31 30 34 34 38 30 30 65 | 9044b13b1044800e | Read 3 bytes @ address 0x000026FD (Data = 0=x255ABF)
O | 00000030: 30 30 30 62 66 30 31 32 33 32 33 37 30 31 30 62 | 686bF 81232370616b |
fl3 000000408: 64 36 30 30 30 30 30 32 30 30 30 30 30 30 30 30 |d60000O200000000|
Bl3 | 00000650: 30 30 30 62 66 30 30 30 30 30 36 34 62 31 38 62 | 666bf 8006886 4b16b |
00000068: 35 31 62 62 31 30 36 34 38 30 36 34 39 30 30 65 |51bb1864808649 80e | J-Link ARM V4.58a = =
00000070: 30 30 30 62 66 30 36 34 38 30 33 36 38 31 33 62 | 888bF 86 48036813b |

I~ Intercept on Local Side?

I Intercept on Remote Side?

Clear scrollback buffer

[SEla]aTs a5
08, PRIMASK =

218080848, APSR
#0BABABA,. CONTROL
eCnt = 70093AAA
nk>go
nk>»
t delay: @ ms
t type NORMAL: Resets core & peripherals via SYSRESETREQ & UECTRESET hit.

280800088, EPSR =
= 88, FAULTMASK =

#180008A,. IPSR =
08, BASEPRI =

515}

Save scrollback buffer to file.

Found Cortex—M3 ripl, Little endian.
TPIU fitted.

Select a file to execute as traffic comes in.

: FPUnit: 6 code (BP)> slots and 2 literal slots
nk>go

cygdrive/c/Program Files
cd GDBInit/

/c
$ 1s
gdbconnect50. nk

il gdbconnectme. j1ink
gdbconnectem. 31ink 1

gdbconnects

/cygdrive/c/Progr
less gdbinit_template.jlin

cygdrive/c/Program Files

T e o 0

SEGGER/JL1nkARM_V458a/Samples/GDB

SEGGER/JLinkARM_V458a/Samples/GDB/GDBInit

gdbinit_template.jlink
gdbnet50.j1ink

. 3 1ink
me. j1ink

gdbconnecty
gdbconnecty

SGER/JLinkARM_V458a/Samples/GDB/GDBInit

M_V458a/Samples/GDB/GDBInit

nk>reg
nknown command.
—-Link>rega
nknown command.
—Link>regs

[R@ = 400080060 .

R4 = 20007250,

[R8 = 22114A8C.
[R12= A0BABAB4,. R1
[R14(LR> =

2’ for help.

2?2’ for help.

R3 [515151%15]51%]5)

R? [a1a]5]5 15151510}

2000FF%4 .
alalala]a]5]5]5 e

R2 40008008C .

R6 151515151515 S
AABABANRA,. R10A= BABAA34F. Ril= 20007134

= 200@FFCA,. MSP= 200AFFCA, PSP= 51988220

#ABRA19B,. R15<(PC> = ABBB25FA

XPSR = 610000008, APSR = 60000ABA,. EPSR = 81000008, IPSR =
FBP = 00000BAA, CONTROL = 8@, FAULTMASK = 88, BASEPRI =
ycleCnt = 694E5C17

—Link>

a1615145]51515]5)

@8, PRIMASK = 60

= TR DI

08

08

08

08
06

05 » @ INtxn [720 POLL]

B2 02 OB 26 00 90 00 49 Qo ¢

3 [1 SOF] [Frame: 1965.0]
05 » g INtxn [5POLL) 0B 90 OB @96 PO @0 @1 89 Q@ ¢
3 [446 SOF] [Frames: 1965.1 - 2020.6]
05 =3 [14563 IN-NAK]
05 » £3 [1 ORPHANED]
03 =3 [36 IN-NAK]
" £ [350F] [Frames: 1635.1 - 1635.3]
¢ i OUT txn 55 53 42 43 VC 66 @5 @&
» &3 [63 ORPHANED] [Periodic Timeout]
» =3 [63 ORPHANED] [Periodic Timeout]
» £3 [63 ORPHANED] [Periodic Timeout]
&3 [2162 SOF] [Frames: 1635.4 - 1905.5]
=3 [1660 SOF] [Frames: 3B6.6 - 594.1]
m Control Transfer a3
=3 [311 SOF] [Frames: 594.2 - 6§33.0]
¢ i OUT txn 55 53 42 43 V9 66 @5 90 0@ @
=3 [3 SOF] [Frames: 633.1 - 633.3]

» & OUT txn

FATE e Ikl kA LM

53 53 42 43 VA 66 @5 @@ 12 @

M el o lm Toemm o o1

Apple USB

e As a software 10S developer, you can’t just
write code that talks to custom hardware
using the 30-pin Doc

®
[

O 6 @ MFi Program - Apple Deve X

(& https://developer.apple.com/programs/mfi/

@& Developer

Technologies Resources

MFi Program

Join the MFi licensing program and get the hardware

components, tools, documentation, technical support,

and certification logos needed to create AirPlay audio

accessories and electronic accessories that connect to

iPod, iPhone, and iPad.

Vendors with custom hardware D 90

throu 8.0,,

Hardware Components and Docume

Get the hardware connectors and components that
are required to manufacture iPod, iPhone, iPad, and
AirPlay audio accessories. And access the iPod
Accessory protocol specification, the communication
protocol used to interact with iPod, iPhone, and iPad.

MFi Logos

Promote your electronic accessory with MFi logos.
Made for iPod, Made for iPhone, Made for iPad, and
AirPlay logos communicate to customers that an
electronic accessory has been designed to connect
specifically to iPod, iPhone, or iPad, and has been
certified hv the develaner ta meet Annle nerfarmance

s

o
C
&
4
[

Support Member Center Q

MFI

Join the MFi Program

Hardware Connectors and Components v
Testing Tools v
Technical Information v
Technical Support v
Product Certification v
MFi and AirPlay Logos v
iPod, iPhone, and iPad Compatibility Icons v

Remember that STM
MCU?

(& | www.st.com/web/catalog/mmc/FM141/SC1169/SS1575/LN9/PF245079

K ’I LAie.augmented

m Products Applications Support Sample & Buy About Contact My ST Log

STM32F20i

. Quick View Design Resources Sample & Buy All

STM32F207VG

High-performance ARM Cortex-M3 MCU with 1 Mbyte Flash, 120 MHz CPU, ART Accelerator,
Ethernet

Active

Many MCU OEMs will provide

developer libs
e STM provides 1AP libraries for STM developers

e regular “C” libraries for communicating with
1AP-enabled devices.

® a packet parsing/building library
¢ Disambiguation:

¢ iAP = iPod/iPhone Accessory Protocol (i1AP)

® “not* in-application-programming

® OO0 S§5TM32 iPod iPhone Acces: X |

& (& www.scribd.com/doc/62884702/STM32-iPod-iPhone-Accessories-Library-Presentation-v0-2 D

Scribd. Q| @ Bowse -

Bl AddNote | (B)Link | ¢ »Embed [Save for later + - Kl 1 |of27 (8 Readcast HLike

Now you can comment on specific sections as well. STM32 |P0d |F
£ A ries Li
7’ ccessories

Presentation v

i 1 ¥ Downle
STM32 - iPod/iPhone
i i <4 AddTot
Accessories Library
e
General Presentation
Friend G

————

Q Search This Docume

Press 3F to search anywhe

Ny e BN

USB Host/Device in MCUS

® iAP is just the device protocol not FULL USB
implementation

¢ Most companies will NOT write their own USB
stack.

¢ instead they will license a USB stack from
companies

e Companies like: HCC Embedded

e The HCC stack is used (via API) to embed In
software running on MCUs

(5 www.hcc-embedded.com/products/usb/embedded-usb S U

dj SB Host/Device in MCUsg--
HCC

PRODUCTS TARGETS SERVICES QUALITY DOWNLOADS NEWS SALES ABOUT

Links

Embedded USB EMBEDDED USB
vi | river .

Embedded USB stacks from HCC are mature, widely used stacks that can support almost any
USB Host Class Drivers Support desired USB configuration. The USB suite includes solutions not only for common functions like
Advanced Network Integration HID, Hub and Mass St'orage put also fqr more sophisgicated requirements including

Isochronous, Composite Devices, and interfaces to File Systems and Ethernet. This means

Target Support developers can exploit USB to its full capability with ease without having to worry about
developing highly specialized drivers. Software is generally provided as a source code project
for most popular RTOS, MCU's and compilers. This means that embedded developers no
longer need feel constrained by limited support available on their chosen target. HCC provide
software for all interface speeds, all transfer types, USB 1.1/2.0, Host, Device and OTG modes.
Having one of the broadest selections of class drivers available in the embedded market
ensures that, irrespective of your future needs, HCC can provide long-term support.

Videos

Iﬁg
@

USB Features
USB Host:

HCC’s USB Host stack is a scalable suite that enables an embedded host to control a variety of
USB devices including pen-drives, printers, audio devices, joysticks, virtual serial ports and
network interfaces. The embedded USB host stack supports EHCI, OHCI and non-standard
USB controllers.

USB Device:

HCC's USB device stack allows developers to integrate USB device functionality into their
embedded devices. It is available with a comprehensive suite of class drivers that gives the
device many functional possibilities, including operating as a pen-drive, virtual serial port,
joystick, audio system or a network card.

USB OTG:

USB Host/Device in MCUSs

e AP stack will then sit on top of a embedded
USB implementation

¢ In a “bare metal” executable image this means
a large source base that you can just audit

e As APIl/includes in a monolithic executable,
parser bugs in the USB implementation mean
code execution on the ARM core....

e Now we’ve come full circle on ARM
Exploitation

Project “Osprey”:
I made a thing you might
like

I'ravis Goodspbeed’s FaceDancer

wesome tool...

Project “Osprey”:
ASSEMBLY IS A BARRIER

TO ENTRY for many of us,
SO NO ASSEMBLY PLZ!

Project “Osprey”

e (oal: Build a hardware, firmware, and PC/Mobile based
software platform to enable the creation of consumer

product

® Keatures:

Built in RF capability (Zigbee, Mesh Networking, etc)
Onboard EEPROM and MicroSD Card (for storage)
Programmable, low-cost, and low-power

Serial interface to PCs and Mobiles (via onboard
controller)

Expandable (via mezzanine riser connections to our
daughter boards (SPI, I2C, UART, GPIO, etc.)

" J:WXipiter\...\ACD3268-Xipiter_Osprey Rev-A_12Mar2039.pcb* - PADS Layout

=2 = BORL v @@ Eap oo QRS B E
Bl Edt Yew Setwp ook Heb T s
ENEEARReHRH=EB@USET

’00000000000°0000 0
TP10 TP TP
15’ Ty 00 00 0 ST &i

R2IEE] g~ © k0
2l °7 Eac

c32E s S m Ry EIC2 _
™~

P2 [2][3] M EF
|

= RERI o == =
[\ ci_'l["O

QD[gTOPIF- . | |

c‘; ‘ﬁ..—. .(
Srmlenpiad Bl
=505 D15 ae N y

| |:|R5{ >

£ i
JPZI:“:I JP1TP12

I
=

s €6 b
Project “Osprey
First Incarnation: A Consumer hardware physical security

device interfacing with your cellphone

Also: Hardware encryption device for mesh networked
communications and an encryption/storage “backpack” for
your mobile device

For researchers:

e A fully assembled attack platform for RF devices: NFC,
SimpliciTI, Zigbee/802.15.4, etc.

e A fully assembled attack platform for USB devices (as
DEVICE and host.)

Project “Osprey”:
Features for Researchers

e No Assembly

e Buy the one you want with the firmware you need for
your project.

e |t just works out of box

¢ You can program it if you want to...

Project *Osprey”

e Hardware will be”closed” but...

e can be re-purposed as a hardware platform for “low-level”
security research (subsidized by it’s use as consumer prod)

e FEATURES FOR RESEARCHERS:
e Access to Tag Connect Programming Interface
e Various “versions” via firmware builds
e USB device-host interface (for fuzzing)

e “Bus Pirate” replacement (UART, i2C, SPI, maybe
JTAG)

e A fully assembled attack platform for RF devices: NFC,
SimpliciTl, Zigbee, etc.

ced by big ugly switching
conyeptor -

Project “Osprey”

e How soon until you can get one?
e Several milestones first:

e Focusing on release to consumer (and one private
industry application for a customer)

e Currently in Hardware Rev-A but Osprey Rev-B
expected in the next two months (hardware fixups and
and additions, example: MAX3453E)

e First production run of Rev-B (of more than 100 units)
in July.

e Already plans for a Rev-C which may or may not
include an ARM core (via PD-07 mezzanine)

Conclusions & Take-Aways

The world is changing, we are entering (if not already in) a
“post-pc” exploitation environment.

ARM shellcoding and exploitation is fun! Easier that people
think

ROP on ARM actually yields many useful an interesting
gadgets because of the mixed instruction modes

NX as well as all of the modern protections on both Linux
and Android can be bypassed with nuances of the ARM
Microprocessor.

“Hardware Hacking” is real and not as hard as we think...

Custom hardware devices like “Osprey” will make this
more accessible...

“Advanced Software
Exploitation on ARM”

http://www.dontstuffbeansupyournose.com

Stephen A. Ridley: @s7ephen
ridley@dontstuffbeansupyournose.com

