Corroding immobilizer cryptography

Karsten Nohl <nohl@srlabs.de>



# Agenda

# Immobilizer introduction

- Cryptographic vulnerabilities
- Secure car protection gap

# Immobilizers are the first application of IT security to cars



# Theft went down quickly thanks to immobilizer technology





# Immobilizers are simple challenge-response tokens



# Three technologies dominate the immobilizer market





# Agenda

- Immobilizer introduction
- Cryptographic vulnerabilities
- Secure car protection gap

# Victim 1: DST40 transponder is vulnerable to brute-force



## Victim 2: Hitag2 is vulnerable to cryptanalysis (1/2)

Hitag2 cipher violates several stream cipher design principles



# Victim 2: Hitag2 is vulnerable to cryptanalysis (2/2)

SAT solving ("smart brute force") solves Hitag2 system of equations in minutes



## Victim 3: Megamos uses insecure challenge-response protocol



Megamos "optimizes" protocol to only require two messages )))Transponder Car ((( Challenge Response Counter-response Key is not needed to collect breakable challenge-response pairs!

Attack surface

Key cloning

- Key cloning when car is present
- Car theft with no access to key!

# Immobilizer weaknesses are actively being exploited

#### Car transponder duplication machines



# Agenda

- Immobilizer introduction
- Cryptographic vulnerabilities
- Secure car protection gap

# Cars have security issues far beyond cryptographic design of immobilizers

|           | Cryptographic best practice |                    |                   |                                                  |
|-----------|-----------------------------|--------------------|-------------------|--------------------------------------------------|
|           | Key<br>length               | Cipher<br>strength | Protocol strength | Actual method of car theft                       |
| DST 40    | 0 0                         | 0 0                | 0 0               |                                                  |
| DST 80    | 0 0                         | 000                | 0 0               | Vulnerabilities in car controller are            |
| Hitag 2   | 0 0                         | 0 0                | 0 0               | used to program new keys; typically over CAN bus |
| Hitag 3   | 0 0                         | 0 0                | 0 0               | Over CAN bus                                     |
| Hitag AES | 0 0                         | 0 0                | 0 0               |                                                  |
| Megamos   | • •                         | 0 0                | 0 0               | Unclear if electronic theft occurs               |

# Video: Car theft through car controller exploit



"Insecure" smartphones have more advanced protection than

car controllers

### **Protection Best practice** area Hardware **Secure boot** Hardware key store Debug modes disabled OS $(\mathbf{X})$ Sandboxing **Memory randomization** Signature validation **Software Modern programming** X language Source code analysis X



- Available
- Ineffective
- Not available

### Wide-scale car hacking is just about to start

#### Car security is weak

- Immobilizers were the first IT security application in cars
- All popular systems have stark design deficiencies, violating long-standing best practices
- Further weaknesses that are commonly used for car theft arise from insecure car controller implementations

#### **Protection demand grows**

- Cars quickly add new applications that need to be protected:
  - Remote assistance (OnStar, mbrace)
  - In-car Wi-Fi
  - Extensible entertainment system
- The security of these new systems often relies on the same car controllers that are already known to be weak

#### Wide-scale car hacking expected

- Cars provide large attack surface (academia and thieves have shown this repeatedly)
- As soon as meaningful attack incentives emerge, cars will be easy prey
- Car manufacturers have two strategic mitigation options:
- a. Keep cars dumb and simple and thereby attack incentives away
- b. Strongly invest in security expertise to find and fix design and implementation bugs



## Take-aways

- Immobilizers, the first application of IT security to cars, are flawed in their design and implementation
- New attack incentives will be exploited quickly, as attack tools against core components already exist
- The time to prepare all critical car components for the onslaught of hackers is now

#### Questions?

Karsten Nohl <nohl@srlabs.de>