RRRRRRRRRRRRRRRRR

I R A PR

RRRRRRRR RRRRRRR 00000000000 00000000000 ttttttttttt kkkkkkkk kkkkkkknnnn ttttttttttt SS5555555SS

$5555555555555S tttt fAAFFfAFFFFFffef iiaasasasassassad
B f: o f f

555558585 t:
trtettet:

irinf
fffff

Liar! Macs have
no viruses!

/_\ /\ D A /IO
CDSEI“E /7 \\\||||/_|'_\// /N 'O VAR VAR B VA
//\ PO NN T 27O 22 CHT Ty
Solid Security.Verified. _\ \/ _/_/\—’_l_l_l |__/_/|_| |_() \/ _’_ _ l_l_/
|

Who Am 1

Don't fake me foo seriously, I love the Human brain!
The capitalist pig degrees: Economics & MBA.
Worked for the evil banking system!

Security Researcher at COSEINC (the PLA rumour so
maybe I'm still on the evil side, damn!).

Liousy coder.
Co—authored a MISC arficle without speaking French!
Passionate about 911s.

Today's subject

= Classic kernel rootkits aka kernel extensions.

" Two simple ideas that can make them a lot more
powerful and universal.

= Sample applications of the "new" possibilities.

Assumplions

(the economist’s dirty secref that makes everything possible)

® Reaching to uid=0 is your problem!
" The same with startup and persistency aka APT.

= Probabilities should be favorable fo you.

= Odays garage sale at SyScan '13 by Stefan Esser.
" You know how fo create kernel extensions.
= Target is Mountain Lion 10.8.2, 64 bits.

Current state of the “art”

= Very few public developments since Lieopard,
besides EFI, and recently DTrace rootkits!

= Just lame Made in Italy rootkits (there goes the
myth about Ifalian design!).

= Still, we must concede that they are “effective” and
working in the “wild".

= The tools scene is even worse! No Such Tools...

&

IMPLIGITY
1o THEOLTIMATE
OOPHISTIGATION

¥,

=

Simple Ideas
Problem #1

" Many interesting kernel symbols are not exported.

" Some are available in Unsupported & Private KPIs.
= That's not good enough for stable rootkits.

= Solving kernel symbols from a kernel extension is
possible in Lion and Mountain Lion.

" Not in Snow Lieopard and previous versions.

¥,

=

Simple Ideas

= __LINKEDIT segment contains the symbol info.
= Zeroed up fo Snow Leopard.
= Available in Lion and Mountain Lion.

* Not possible fo have universal solution (Snow
Leopard is still used by many people).

= O5.X/Crisis solves the symbols in userland and
sends them fo the kernel roofkit.

¥,

=

Simple Ideas

= One easy solution is fo read the kernel image from
disk and process its symbols.

= Some kind of “myth” that reading filesystem(s) from
kernel is kind of hard to do.

= Infactitis very easy...

" Kernel ASLR is not a problem in this scenario.

-

MANBE I CAN GET A
POINT FOR ORIGINALITY,
N— h

2
0
Ks)
—
_,
Al
=
VA

A NOUN THAT LOST
ITS AMATEUR STAIUS.

¥,

=

Simple Ideas

[dea #1

® Virtual File System - VFS.

" Read mach_kernel using VFS functions.

* Possible to implement using only KPI symbols.
= And with non—exported.

" Idea #2 can help with these.

" Let's explore the KPI symbols solution.
= Recipe for success:

1 Vnode of mach_kernel.

1 VFS context.

[Data buffer.

3 UIO structure/buffer.

¥

=

Simple Ideas

(] How to obtain the vnode information.

= vnode_lookup(const char” path, int flags, vnode_t
"vpp, vfs_context_t cix).

= Converls a path into a vnode.
= Something like this: l

vnode t kernel node = NULLVP;
int error = vnode lookup("/mach kernel", 0, &kernel vnode, NULL);

nnnnnnnnnnnn
that NULL!

= Why can we pass NULL as vfs context?

* Because Apple is our friend and takes care of it for us!

errno_t
vnode_lookup(const char *path, int flags, vnode_t *vpp, vfs_context_t ctx)

struct nameidata nd;
int error;
u int32 t ndflags = 0;

if (ctx == NULL) { /* XXX technically an error */

ctx = vfs_context_current(); // <- thank you! :-)

(.-
}
= vfs_context_current is available in Unsupported KPL.

&

¥,

=

Simple Ideas

" Alex Ionescu told me that this context might not be
stable enough.

= If used very early in the boot process.
= You probably want to use the correct function.

= Or steal the context from somewhere else.

¥,

=

Simple Ideas

1 Data buffer.
= Statically allocated.

= Or dynamically, using one of the many kernel
functions:

= kalloc, kmem_alloc, O©SMalloc, IOMalloc,
MALLOC, _MALLOC.

1 VIO buffer.
= Use uio_create and uio_addiov.
= Both are available in BSD KPI.

char buffer[PAGE SIZE 64];

uio t uio = NULL;

uio = uio create(1, 0, UIO SYSSPACE, UIO READ);

int error = uio addiov(uio, CAST USER ADDR T(buffer), PAGE SIZE 64);

&

¥

=

Simple Ideas

" Recipe for success:

vl vnode of /mach_kernel.
vl VFS context.

V] Data buffer.

V1 UIO structure/buffer.

= Now we can finally read the kernel from disk...

¥,

=

Simple Ideas

= Reading from the filesystem:

= VNOP_READ(vnode_t vp, sfruct io” uio, int ioflag,
vfs_context_t ctx).

= “Call down to a filesystem fo read file data”.
= Once again Apple takes care of the vfs context.

= If call was successful the buffer will contain data.
= To write use VNOP_WRITE.

¥,

=

Simple Ideas

" To solve the symbols we just need fo read the
Mach—O header and exiract some information:

= __TEXT segment address (to find KASLR).
= __LINKEDIT segment offset and size.

= Symbols and strings tables offset and size from
LC_SYMTAB command.

¥,

=

Simple Ideas

= Read __LINKEDIT into a buffer (-1Mb).

" Process it and solve immediately all symbols we
(might) need.

= Or just solve symbols when required to obfuscate
things a liffle.

= Don't forget that KASLR slide must be added to the
refrieved values.

¥,

=

Simple Ideas

* To compute the KASLR value find out the base
address of the running kernel.

= Using IDT or a kernel function address and then
lookup Mach—O magic value backwards.

= Compute the __TEXT address difference to the
value we extracted from disk image.

" Or use some other method you might have.

¥,

=

Simple Ideas

Checkpoint #1

= We are able fo read and write to any file.
" For now the kernel is the interesling target.

= We can solve any available symbol — function or
variable, exported or not in KPIs.

= Compatible with all OS5 X versions.

¥,

=

Simple Ideas

Problem #2

= Many inferesting functions & variables are static
and not available thru symbols.

= Cross references not available (IDA spoils us!).

= Hex search sucks and it’s not that reliable.

¥,

=

Simple Ideas

Idea #2

" Integrate a disassembler in the roofki!

= Tested with diStorm, my personal favorite.

= Great surprise, it worked at first attempt!

= It’s kind of like having IDA inside the rootkit.
= Extremely fast in a modern CPU.

" One second to disassemble the kernel.

=

Simple Ideas

" The things you learn...

* There is already a disassembler in XNU kernel!

= DTrace has this function: dirace_disx86.

= "Disassemble a single x86 or amd64 instruction.”

= Unfortunately, strings output depends on
DIS_TEXT, which is not aclive.

= Still, it's a fun thing to be found in the kernel.
= Thanks to espes for the tip ©.

¥,

=

Simple Ideas

Checkpoint #2

= Ability to search for static functions and variables.

= Possibility fo hook calls by searching references
and modifying the offsets.

= Improve success rafe while searching for
structure ’s fields.

¥,

=

Simple Ideas

= We can have full control of the kernel.
" Everything can be dynamic.

= Stable and future proof rootkits.

= Can Apple close the VFS door?

= We still have the disassembler(s).

" Kernel anti—disassembly ? ©

" Imagination is the limit!

$
Praclical applications

" One way fo execute userland code.

Simple Ideas

" Playing with DTrace’s syscall provider.
= Zombie roofkits.

= Additional applications in the SyScan slides and
Phrack paper (whenever it comes out).

Exec userland

* How to execute userland binaries from the rootkit.
= Many different possibilities exist.
= This particular one uses (or abuses):
* Mach-O header “features”.
" Dyld.
= Launchd.
= Not the most efficient but fun. e

Exec userland
Idea!

= Kill a process controlled by launchd.

" Infercept the respawn.
" Inject a dynamic library into its Mach—O header.

" Let dyld do its work: load library, solve symbols
and execute the library's constructor.

= Injected library can now fork, exec, and so on...

S

Exec userland

Requirements

1 Write to userland memory from kernel.
 Dyld must read modified header.
-l Kernel location to intercept & execute the injection.

1 A modified Mach—O header.
- A dynamic library.

| play Russian

1 Luck (always required!).

Exec userland

] Write to userland memory from kernel.

= mach_vm_write can't be used because data is in
kernel space.

= copyout only copies fo current proc, not arbitrary.
= Easiest solution is to use vm_map_write_user.

= "Copy out data from a kernel space info space in
the destination map. The space must already exist in
the destination map.”

S

Exec userland

] Write to userland memory from kernel.

" vm_map_write_user(vm_map_t map, void “src_p,
vm_map_address_t dst_addr, vm_size_t1 size);

= Map paramelter is the map field from the task
structure.

= proc and task structures are linked via void ".

= Use proc_find(int pid) to retrieve proc struct.

Exec userland

v] Write to userland memory from kernel.

= The remaining parameters are buffer fo write from,
destination address, and buffer size.

struct proc *p = proc_find(PID);

struct task *task = (struct task*)(p->task);

kern return t kr = 0;

vm_prot_t new protection = VM _PROT WRITE | VM _PROT READ;

char *fname = "nemo_and snare rule!";

// modify memory permissions

kr = mach_vm_protect(task->map, 0x1000, len, FALSE, new protection);
kr = vm_map write user(task->map, fname, 0x1000, strlen(fname)+1);
proc_rele(p);

Exec userland

vl Dyld must read modified header.

" Adding a new library to the header is equivalent to
DYLD_INSERT_LIBRARIES (LD_PRELOAD).

" Kernel passes control fo dyld.

" Then dyld to target's entrypoint.
" Dyld re—reads the Mach—O header.

= If header is modified before dyld's control we can
inject a library (or change entrypoint and so on).

S

Exec userland

] Kernel location fo intercept & execute the injection.

» We need to find a kernel function within the new
process creation workflow.

= Hook it with our function responsible for
modifying the target's header.

= We are looking for a specific process so hew proc
structure fields must be already set.

= exec_mach_imgact is the "heart” of a new process:

execve() -> __mac_execve()

v
exec_activate_image()

Vv
Read file

v
.----> exec_mach_imgact() -> run dyld -> target entry point

load_machfile()

v
parse_machfile() [maps the load commands into memory]

v
load_dylinker() [sets image entrypoint to dyld]

Vv
S &

Exec userland

* Inside the "heart" there's a small function called
proc_reselregister.

" Located near the end so almost everything is ready
fo pass control to dyld. ¥oid proc_resetregister(proc_t p)

. I proc_lock(p);
- Easg fo rp and hook! p->p_lflag &= ~P_LREGISTER;

proc_unlock(p);

" Have a look af Hydra }
(github.com/gdbinit/hydra). \

Exec userland

vl Modified Mach—O header.
" Very easy fo do.

= Most binaries have enough space (>90% in iOS).
= Target in memory is always non—fat.

" Give a look at my last year presentations slides.

= Or ©S.X/Boubou source code
(https:// github.com/ gdbinit/ osx_boubou).

HEADER

Load Commands

Load Commands

Command 1

Command 1

Command 2

Command 2

Command n

Command n

¥ . w— — — — v— v—
\ ——— —— — —

Command n+1

Data

VVVVVYV

Section 1

Section

Section 2

A s, s, s W
N — ——
s, w— v—

Section

Section 1

Section

Section 2

A s, s, s W
N — ——
s — —

Section

\ ——————— —— —— —— —— —— —— —— —— ——— v— W
£ s . s o e, S— — — —— ——— —————— —— —— — — — — 8

-
~

- Fix this struct
struct mach_header {

<— add +1
sizeofcmds; <— size of new cmd

uint32_t ncmds;
uint32_t

<- add new command here
struct dylib_command {
uint32_t
uint32_t
struct dy11b

A\ —————————

cmdsize;

\ — — —

\ — — —

Exec userland

vl A dynamic library.
= Use Xcode's template.

= Add a constructor.

extern void init(void) _ attribute ((constructor));
void init(void)

{
// do evil stuff here

)
= Fork, exec, system, thread(s), whatever you need.

= Don't forget to cleanup library fraces!

= OS X is “instrumentation” rich:

" DTrace.

" FSEvents.

" kauth.

" kdebug.

" TrustedBSD.
* Auditing.

= Let’s focus on DTrace’s syscall provider.

= Because nemo presented DTrace rootkits.
= Siliconblade with Volatility "detects” them.
= But Volatility is vulnerable to an old trick.

" Traces every syscall entry and exit.

" mach_{rap is the mach equivalent provider.

= DTrace’s philosophy of zero probe effect when
disabled.

= Activation of this provider is equivalent to sysent
hooking.

" Modifies the sy_call pointer inside sysent struct.

&

Before:
gdb$ print *(struct sysent*)(oxffffff8025255840+5*sizeof(struct sysent))
$12 = {

sy narg = 0x3,

sy resv = 0x0,

sy flags = 0x0,

sy call = oxffffff8024cfc210, <- open syscall, sysent[5]
sy arg munge32 = Oxffffff8024fe34f0,

Sy _arg_mungeé64 = 0,

sy return_type = 0Ox1,

sy arg bytes = Oxc

}

dtrace systrace syscall is located at address OxFFFFFF8024FDC630.

After enabling a 'syscall::open:entry' probe:
gdb$ print *(struct sysent*)(oxffffff8025255840+5*sizeof(struct sysent))

$13 = {

sy narg = 0x3,

sy resv = 0x0,

sy flags = 0x0,

sy call = oxffffff8024fdc630, <- now points to dtrace systrace syscall
sy arg munge32 = Ooxffffff8024fe34fo,

sy _arg_mungeé4 = 0,

sy return_type = 0Ox1,

sy arg bytes = Oxc

= Not very useful provider to detect sysent hooking.

* DTrace doesn't care about original pointer.
= fbt provider is better for this task.
= Nemo's DTrace public rootkit uses this provider ;-).

" Can be detected by dumping the sysent table and
verifying if _dtrace_systrace_syscall is present.

= Probability of false positives, although small?

&

$ python vol.py mac_check syscalls --profile=Mac10 8 3 64bitx64 \
-f ~/Forensics/dtrace/Mac\ 0S\ X\ 10.8\ 64-bit-12e6095b.vmem
Volatile Systems Volatility Framework 2.3 alpha

Table Name

SyscallTable
SyscallTable
SyscallTable
SyscallTable

SyscallTable
SyscallTable
SyscallTable
SyscallTable
SyscallTable

Index

OxFFFFF80085755F0 _
OxFFFFF8008555430 _

Address

oxffffff8008559730

oxffffff80082fbc20

oxffffff80082fc8co
oxffffff80085755f0

oxFfFfFf8008575630 _

OxFFFFFFB008556660 _
OxFFFFF80085755F0 _

Symbol

“unlink
_nosys

" My goal is not to mock anyone, just fooling around!

= Famous last words:

" "Nemo's presentation has shown again that
known fools can be used for subverting a
system and won't be easy fo spot by a novice
investigator, but then again nothing can hide

o n
in memory ;)
@ http://siliconblade.blogspot.com/2013/04/hunting—d—trace—rootkits—with.html

&

Captain Hindsight

With his sidekicks, Shoulda, Coulda, and Woulda

= It's rather easy fo find what you know.

" How about what you don't know?
" syscall provider doesn' care about sysent hooking.
= But that is easily detected by memory forensics.

= What happens if we modify all the kernel
references fo sysent?

= AKA really old school sysent shadowing...

$ python vol.py mac_check syscalls --profile=Mac10 8 3 64bitx64 \
-f ~/Forensics/dtrace/Mac\ 0S\ X\ 10.8\ 64-bit-no\ hooking.vmem
Volatile Systems Volatility Framework 2.3 alpha

(ens)
SyscallTable 339 oxffffff800854a490 fstaté4
SyscallTable 340 oxffffff80082fd620 lstat64
SyscallTable 341 oxffffff80082fd420 stat64 extended
SyscallTable 342 oxffffff80082fd6co lstat64 extended

()% ROOXEA3A47(0 PXTended
SyscallTable 344 oxffffff8008300c20 _getd1rentr1e564

UX S0U08 JCoU
SyscallTable 346 oxffffff8008219e80 fstatf564
SyscallTable 347 Oxffffff80082fa2a0 getfsstat6s
SyscallTable 348 oxffffff80082fa7c0 __ pthread chdir
SyscallTable 349 oxffffff80082fa640 _ pthread fchdir
SyscallTable 350 Ooxffffff8008535ch0 _audit
SyscallTable 351 oxffffff8008535e20 _auditon No hooking!
C..0)

python vol.py mac_check syscalls --profile=Mac10 8 3 64bitx64 \
-f ~/Forensics/dtrace/Mac\ 0S\ X\ 10.8\ 64-bit-hooking1.vmem
Volatile Systems Volatility Framework 2.3 alpha

(ens)

SyscallTable 339 oxffffff800854a490 fstat64
SyscallTable 340 oxffffff80082fd620 lstat64
SyscallTable 341 oxffffff80082fd420 stat64 extended
SyscallTable 342 0xffffff80082fd6c0 _1stat6s extended
SyscallTable 346 0xffffff80082f9e80 _fstatf564
SyscallTable 347 oxffffff80082fa2a0 getfsstat64
SyscallTable 348 oxffffff80082fa7c0 _ pthread chdir
SyscallTable 349 oxffffff80082fa640 pthread fchdir
SyscallTable 350 Ooxffffff8008535ch0 audit
SyscallTable 351 oxffffff8008535€20 _auditon

(c e) Sysent
hooking, meh!

“

$ python vol.py mac_check syscalls --profile=Mac10 8 3 64bitx64 \
-f ~/Forensics/dtrace/Mac\ 0S\ X\ 10.8\ 64-bit-hooking2.vmem
Volatile Systems Volatility Framework 2.3 alpha

(...)

SyscallTable 339 oxffffff800854a490 _fstat64

SyscallTable 340 oxffffff80082fd620 lstaté4

SyscallTable 341 oxffffff80082fd420 stat64 extended
SyscallTable 342 0xffffff80082fd6c0 lstat64 extended
SyscallTable 344 0xffffff8008300c20 getdlrentrle564
yscalllable 450X C i

SyscallTable 346 0xffffff80082f9€80 fstatf564

SyscallTable 347 oxffffff80082fa2a0 getfsstat6s

SyscallTable 348 oxffffff80082fa7c0 pthread chdir
SyscallTable 349 oxffffff80082fa640 pthread fchdir
SyscallTable 350 Oxffffff8008535cb0 audit s
SyscallTable 351 Oxffffff8008535e20 auditon

(...)

= Volatility plugin can easily find sysent table
modification(s).

= But fails to detect a simple shadow sysent table.

" Nothing new, extremely easy to implement with the
kernel disassembler!

" Hindsight is always easy!

= Beware with the confidence levels you get from it.

&

Checkpoint

= Many instrumentation features available!
* Do not forget them if you are the evil rootkit coder.

* Helpful for a quick assessment if you are the
potential victim.

* Friend or foe, use them!

= But don't trust too much in the tools ©.

&

Otterz?
Zombies?

" Create a kernel memory leak.
= Copy rootkit code fo that area.

= Fix permissions and symbols offsets.
" That’s easy, we have a disassembler!

= Redirect execution to the zombie area.
= Return KERN_FAILURE to rootkit's start function.

vl Create a kernel memory leak.

= Using one of the dynamic memory functions.

= kalloc, kmem_alloc, OSMalloc, MALLOC/FREE,
_MALLOC/_FREE, IOMalloc/10F ree.

= No garbage collection mechanism (frue?).

* Find rootkit’s Mach—O header and compute its size
(__TEXT + __DATA segments).

&

 Fix symbols offsefs.

= Kexts have no symbol stubs as most userland
binaries.

= RIP addressing is used (offset from kext to kernel).
= Symbols are solved when kext is loaded.

= When we copy to the zombie area those offsets are
wrong.

&

1 Fix symbols offsets.

= We can have afable with all external symbols or
dynamically find them (read rootkit from disk, etc).

* Lookup each kernel symbol address.

" Disassemble the original rootkit code address and
find the references to the original symbol.

= Find CALL and JMP and check if target is the
symbol.

vl Fix symbols offsefs.

= Not useful to disassemble the zombie area because
offsets are wrong.

= Compute the distance to start address from CALLs
in original and add it fo the zombie start address.

= Now we have the location of each symbol inside the
zombie and can fix the offset back to kernel
symbol.

&

] Redirect execution to zombie.

= We can 't simply jump to new code because rootkit
start function must return a value!

= Hijack some function and have it execute a zombie
start function.

= Or just start a new kernel thread with
kernel_thread_start.

&

vl Redirect execution to zombie.

* To find the zombie start function use the same trick
as symbols:

= Compute the difference fo the start in the original
rootkit.

= Add it to the start of zombie and we gef the correct
pointer.

&

vl Return KERN_FAILURE.
" Original kext must return a value.

" If we return KERN_SUCCESS, kext will be loaded
and we need to hide or unload it.

= If we refurn KERN_FAILURE, kext will fail fo load
and OS X will cleanup it for us.

" Nof a problem because zombie is already resident.

&

Advantages

= No need to hide from kexistat.
" No kext related structures.
= Harder fo find (easier now because I'm felling you).

* Wipe out zombie Mach—O header and there’s only
code/data in kernel memory.

= It’s fun!

Demo

(Dear Spooks: you don't need to break in my
room or compuler, sample code will be made

public! #kthxbay)

Marketing

" Nemo, Snare and I are going to write a book!

= About state of the art ©S X rootkits (we hope so).
= Hopefully out in a year.

" By No Starch Press.

* Limited $2500 edition with a plug’'n’pray EFI
rootkit dongle!

= Nah, just kidding! Don 't forget to buy it anyway ©

S

\‘ /’
%

U Internal structures!

= Some are stable, others not so much.
= Proc structure is one of those.

= We just need a few fields.

= Maybe find their offsets by disassembling stable
functions?

&

\‘ / -
%

1 Memory forensics

" The “new” rootkit enemy.

= But with its own flaws.

* In parficular the acquisition process.

= Which we can have a chance to play with.
= 29C3 had a presentation about Windows.

" Research—in—progress...

\‘ /’
%

= And so many others.
" If's a cat & mouse game.
= Any mistake can be costly.

= Butit's not that easy for the defensive side.

1. Explain Newtons First Nakkd FOob MoG. GRUG
Law of Motion in your " Pubbawup ziNk wattoom
OWN Words. . GAZoRK. CHUMBLE Spuzz.

Conclusions

= Improving the quality of OS X kernel rootkits is
very easy.

= Prevention and detection tools must be researched
& developed.

= Kernel is sexy but don't forget userland.

= ©5.X/Crisis userland rootkit is powerful!

= Easier to hide in userland from memory forensics.

= Read the paper, if you haven'talready ©. .

Conclusions

= WE don't know sh't about OS5 X malware/rootkits.
= (AV) industry is generally lagging.

= Attackers have better incentives to be creative.

= Defense is very hard - information asymmetry.

" In particular because it's very easy fo stick fo a
certain paradigm and hard to get out of it.

= That requires a lot of practice!

areets

hemo, noat, share, saure, od, emptydir, korn, gOsh,
spico and all other put.as friends, everyone at
COSEINC, thegrugq, diff-t, #osxre, Gil Dabah from
diStorm, A. Ionescu, Igor from Hex—Rays, Shane
(my assigned drone controller), and you for
spending time of your life listening to me ©.

WOW, THE LAST TWO I HOPE THE TEACHER
HOURS REALLY FLEW BY! DIONT SAY ANYTHING
M—— IMPORTANT.

http://reverse.put.as
hitp:// github.com/ gdbinit
reverser@put.as
(@osxreverser

#osxre @ irc.freenode.net

IF YOU COULD WISH FOR A BIG SUNNY FIELD A STUPID FELD? vouve | ACuAly, TS HAD T
ANYTHING, WHAT mqu T BE N. GOT THAT NOW! THINK BIG! | ARGUE WTH SOMEONE. WHO

RICHES! PONER! PRETEND [100KS :
You COULD HAVE ARTTHING T N i

