
Liar!	
 Macs	
 have	

no	
 viruses!	

-[Revisiting Mac OS X Kernel Rootkits!]-

§  Don't take me too seriously, I love the Human brain!
§  The capitalist pig degrees: Economics & MBA.

§  Worked for the evil banking system!
§  Security Researcher at COSEINC (the PLA rumour so

maybe I'm still on the evil side, damn!).
§  Lousy coder.
§  Co-authored a MISC article without speaking French!

§  Passionate about 911s.

Who Am I

§  Classic kernel rootkits aka kernel extensions.
§  Two simple ideas that can make them a lot more

powerful and universal.
§  Sample applications of the "new" possibilities.

Today's subject
Prologue

§  Reaching to uid=0 is your problem!
§  The same with startup and persistency aka APT.
§  Probabilities should be favorable to you.
§  0days garage sale at SyScan’13 by Stefan Esser.
§  You know how to create kernel extensions.
§  Target is Mountain Lion 10.8.2, 64 bits.

Assumptions
(the economist’s dirty secret that makes everything possible)

Prologue

Also	
 works	
 with	

10.8.3!	

§  Very few public developments since Leopard,
besides EFI, and recently DTrace rootkits!

§  Just lame Made in Italy rootkits (there goes the
myth about Italian design!).

§  Still, we must concede that they are “effective” and
working in the “wild”.

§  The tools scene is even worse! No Such Tools…

Current state of the “art”
Prologue

Simple Ideas

Sophis<cated!	

Not	
 simple.	

§  Many interesting kernel symbols are not exported.

§  Some are available in Unsupported & Private KPIs.

§  That's not good enough for stable rootkits.

§  Solving kernel symbols from a kernel extension is
possible in Lion and Mountain Lion.

§  Not in Snow Leopard and previous versions.

Problem #1
Simple Ideas

§  __LINKEDIT segment contains the symbol info.

§  Zeroed up to Snow Leopard.

§  Available in Lion and Mountain Lion.

§  Not possible to have universal solution (Snow
Leopard is still used by many people).

§  OS.X/Crisis solves the symbols in userland and
sends them to the kernel rootkit.

Simple Ideas

§  One easy solution is to read the kernel image from
disk and process its symbols.

§  Some kind of “myth” that reading filesystem(s) from
kernel is kind of hard to do.

§  In fact it is very easy…

§  Kernel ASLR is not a problem in this scenario.

Simple Ideas

Simple Ideas

§  Virtual File System – VFS.

§  Read mach_kernel using VFS functions.

§  Possible to implement using only KPI symbols.

§  And with non-exported.

§  Idea #2 can help with these.

Idea #1
Simple Ideas

§  Let's explore the KPI symbols solution.

§  Recipe for success:

q Vnode of mach_kernel.

q VFS context.

q Data buffer.

q UIO structure/buffer.

Simple Ideas

q How to obtain the vnode information.

§  vnode_lookup(const char* path, int flags, vnode_t
*vpp, vfs_context_t ctx).

§  Converts a path into a vnode.

§  Something like this:

Simple Ideas

Pay	
 aBen<on	
 to	

that	
 NULL!	

§  Why can we pass NULL as vfs context?

§  Because Apple is our friend and takes care of it for us!

§  vfs_context_current is available in Unsupported KPI.

Simple Ideas

§  Alex Ionescu told me that this context might not be
stable enough.

§  If used very early in the boot process.

§  You probably want to use the correct function.

§  Or steal the context from somewhere else.

Simple Ideas

q Data buffer.

§  Statically allocated.

§  Or dynamically, using one of the many kernel
functions:

§  kalloc, kmem_alloc, OSMalloc, IOMalloc,
MALLOC, _MALLOC.

Simple Ideas

q UIO buffer.

§  Use uio_create and uio_addiov.

§  Both are available in BSD KPI.

Simple Ideas

§  Recipe for success:

þ vnode of /mach_kernel.

þ VFS context.

þ Data buffer.

þ UIO structure/buffer.

§  Now we can finally read the kernel from disk…

Simple Ideas

§  Reading from the filesystem:

§  VNOP_READ(vnode_t vp, struct io* uio, int ioflag,
vfs_context_t ctx).

§  “Call down to a filesystem to read file data”.

§  Once again Apple takes care of the vfs context.

§  If call was successful the buffer will contain data.

§  To write use VNOP_WRITE.

Simple Ideas

§  To solve the symbols we just need to read the
Mach-O header and extract some information:

§ __TEXT segment address (to find KASLR).

§ __LINKEDIT segment offset and size.

§ Symbols and strings tables offset and size from
LC_SYMTAB command.

Simple Ideas

§  Read __LINKEDIT into a buffer (~1Mb).

§  Process it and solve immediately all symbols we
(might) need.

§  Or just solve symbols when required to obfuscate
things a little.

§  Don't forget that KASLR slide must be added to the
retrieved values.

Simple Ideas

§  To compute the KASLR value find out the base
address of the running kernel.

§  Using IDT or a kernel function address and then
lookup Mach-O magic value backwards.

§  Compute the __TEXT address difference to the
value we extracted from disk image.

§  Or use some other method you might have.

Simple Ideas

§  We are able to read and write to any file.

§  For now the kernel is the interesting target.

§  We can solve any available symbol - function or
variable, exported or not in KPIs.

§  Compatible with all OS X versions.

Checkpoint #1
Simple Ideas

§  Many interesting functions & variables are static
and not available thru symbols.

§  Cross references not available (IDA spoils us!).

§  Hex search sucks and it’s not that reliable.

Problem #2
Simple Ideas

§  Integrate a disassembler in the rootkit!

§  Tested with diStorm, my personal favorite.

§  Great surprise, it worked at first attempt!

§  It’s kind of like having IDA inside the rootkit.

§  Extremely fast in a modern CPU.

§  One second to disassemble the kernel.

Idea #2
Simple Ideas

Earth	
 calling	

ESET,	
 hello?	

§  The things you learn…
§  There is already a disassembler in XNU kernel!
§  DTrace has this function: dtrace_disx86.
§  "Disassemble a single x86 or amd64 instruction."
§  Unfortunately, strings output depends on

DIS_TEXT, which is not active.

§  Still, it's a fun thing to be found in the kernel.
§  Thanks to espes for the tip J.

Simple Ideas

§  Ability to search for static functions and variables.

§  Possibility to hook calls by searching references
and modifying the offsets.

§  Improve success rate while searching for
structure’s fields.

Checkpoint #2
Simple Ideas

§  We can have full control of the kernel.

§  Everything can be dynamic.

§  Stable and future proof rootkits.

§  Can Apple close the VFS door?

§  We still have the disassembler(s).

§  Kernel anti-disassembly ? J

§  Imagination is the limit! LSD	
 helps,	

they	
 say!	

Simple Ideas

§  One way to execute userland code.

§  Playing with DTrace’s syscall provider.

§  Zombie rootkits.

§  Additional applications in the SyScan slides and
Phrack paper (whenever it comes out).

Practical applications
Simple Ideas

Dude,	
 where’s	

the	
 paper?	

§  How to execute userland binaries from the rootkit.

§  Many different possibilities exist.

§  This particular one uses (or abuses):

§ Mach-O header “features”.

§ Dyld.

§ Launchd.

§  Not the most efficient but fun.

Exec userland

Kernel	
 calls	

userland,	
 hello?	

§  Kill a process controlled by launchd.

§  Intercept the respawn.

§  Inject a dynamic library into its Mach-O header.

§  Let dyld do its work: load library, solve symbols
and execute the library's constructor.

§  Injected library can now fork, exec, and so on…

Idea!
Exec userland

q Write to userland memory from kernel.

q Dyld must read modified header.

q Kernel location to intercept & execute the injection.

q A modified Mach-O header.

q A dynamic library.

q Luck (always required!).

Requirements
Exec userland

I	
 play	
 Russian	

rouleBe!	

q Write to userland memory from kernel.
§  mach_vm_write can't be used because data is in

kernel space.
§  copyout only copies to current proc, not arbitrary.
§  Easiest solution is to use vm_map_write_user.

§  "Copy out data from a kernel space into space in
the destination map. The space must already exist in
the destination map."

Exec userland

q Write to userland memory from kernel.

§  vm_map_write_user(vm_map_t map, void *src_p,
vm_map_address_t dst_addr, vm_size_t size);

§  Map parameter is the map field from the task
structure.

§  proc and task structures are linked via void *.

§  Use proc_find(int pid) to retrieve proc struct.

Exec userland

þ Write to userland memory from kernel.

§  The remaining parameters are buffer to write from,
destination address, and buffer size.

Exec userland

þ Dyld must read modified header.
§  Adding a new library to the header is equivalent to

DYLD_INSERT_LIBRARIES (LD_PRELOAD).
§  Kernel passes control to dyld.
§  Then dyld to target's entrypoint.

§  Dyld re-reads the Mach-O header.
§  If header is modified before dyld's control we can

inject a library (or change entrypoint and so on).

Exec userland

q Kernel location to intercept & execute the injection.

§  We need to find a kernel function within the new
process creation workflow.

§  Hook it with our function responsible for
modifying the target's header.

§  We are looking for a specific process so new proc
structure fields must be already set.

Exec userland

§  exec_mach_imgact is the "heart" of a new process:

Exec userland

§  Inside the "heart" there's a small function called
proc_resetregister.

§  Located near the end so almost everything is ready
to pass control to dyld.

§  Easy to rip and hook!

§  Have a look at Hydra
(github.com/gdbinit/hydra).

Purrfect!!!	

Exec userland

þ Modified Mach-O header.

§  Very easy to do.

§  Most binaries have enough space (>90% in iOS).

§  Target in memory is always non-fat.

§  Give a look at my last year presentations slides.

§  Or OS.X/Boubou source code
(https://github.com/gdbinit/osx_boubou).

Exec userland

Exec userland

þ A dynamic library.

§  Use Xcode's template.

§  Add a constructor.

§  Fork, exec, system, thread(s), whatever you need.

§  Don't forget to cleanup library traces! I	
 never	
 leave	

footprints!	

Exec userland

§  OS X is “instrumentation” rich:

§ DTrace.

§ FSEvents.

§ kauth.

§ kdebug.

§ TrustedBSD.

§ Auditing.

Don’t detect me

§  Let’s focus on DTrace's syscall provider.

§  Because nemo presented DTrace rootkits.

§  Siliconblade with Volatility "detects" them.

§  But Volatility is vulnerable to an old trick.

Get	
 the	
 f*ck	

ouBa	
 here!	

Don’t detect me

§  Traces every syscall entry and exit.

§  mach_trap is the mach equivalent provider.

§  DTrace's philosophy of zero probe effect when
disabled.

§  Activation of this provider is equivalent to sysent
hooking.

§  Modifies the sy_call pointer inside sysent struct.

Don’t detect me

Don’t detect me

§  Not very useful provider to detect sysent hooking.

§  DTrace doesn't care about original pointer.

§  fbt provider is better for this task.

§  Nemo's DTrace public rootkit uses this provider ;-).

§  Can be detected by dumping the sysent table and
verifying if _dtrace_systrace_syscall is present.

§  Probability of false positives, although small?

Don’t detect me

Don’t detect me

§  My goal is not to mock anyone, just fooling around!
§  Famous last words:

§  "Nemo's presentation has shown again that
known tools can be used for subverting a
system and won't be easy to spot by a novice
investigator, but then again nothing can hide
in memory ;)"

 @ http://siliconblade.blogspot.com/2013/04/hunting-d-trace-rootkits-with.html

Don’t detect me

Don’t detect me

§  It's rather easy to find what you know.

§  How about what you don't know?

§  syscall provider doesn't care about sysent hooking.

§  But that is easily detected by memory forensics.

§  What happens if we modify all the kernel
references to sysent?

§  AKA really old school sysent shadowing…

Don’t detect me

I	
 don't	
 know	

anything!	

Don’t detect me

No	
 hooking!	

Not	
 fun	
 L	

Don’t detect me

Sysent	

hooking,	
 meh!	

Don’t detect me

Shadow	
 sysent.	

U	
 can't	
 see	
 me!	

§  Volatility plugin can easily find sysent table
modification(s).

§  But fails to detect a simple shadow sysent table.

§  Nothing new, extremely easy to implement with the
kernel disassembler!

§  Hindsight is always easy!

§  Beware with the confidence levels you get from it.

Don’t detect me

§  Many instrumentation features available!

§  Do not forget them if you are the evil rootkit coder.

§  Helpful for a quick assessment if you are the
potential victim.

§  Friend or foe, use them!

§  But don't trust too much in the tools J.

Don’t detect me
Checkpoint

Zombies

OBerz?	

Zombies?	

§  Create a kernel memory leak.

§  Copy rootkit code to that area.

§  Fix permissions and symbols offsets.

§  That’s easy, we have a disassembler!

§  Redirect execution to the zombie area.

§  Return KERN_FAILURE to rootkit's start function.

Idea!
Zombies

þ Create a kernel memory leak.

§  Using one of the dynamic memory functions.

§  kalloc, kmem_alloc, OSMalloc, MALLOC/FREE,
_MALLOC/_FREE, IOMalloc/IOFree.

§  No garbage collection mechanism (true?).

§  Find rootkit’s Mach-O header and compute its size
(__TEXT + __DATA segments).

Zombies

q Fix symbols offsets.

§  Kexts have no symbol stubs as most userland
binaries.

§  RIP addressing is used (offset from kext to kernel).

§  Symbols are solved when kext is loaded.

§  When we copy to the zombie area those offsets are
wrong.

Zombies

q Fix symbols offsets.
§  We can have a table with all external symbols or

dynamically find them (read rootkit from disk, etc).
§  Lookup each kernel symbol address.
§  Disassemble the original rootkit code address and

find the references to the original symbol.
§  Find CALL and JMP and check if target is the

symbol.

Zombies

þ Fix symbols offsets.
§  Not useful to disassemble the zombie area because

offsets are wrong.
§  Compute the distance to start address from CALLs

in original and add it to the zombie start address.

§  Now we have the location of each symbol inside the
zombie and can fix the offset back to kernel
symbol.

Zombies

q Redirect execution to zombie.

§  We can’t simply jump to new code because rootkit
start function must return a value!

§  Hijack some function and have it execute a zombie
start function.

§  Or just start a new kernel thread with
kernel_thread_start.

Zombies

þ Redirect execution to zombie.

§  To find the zombie start function use the same trick
as symbols:

§  Compute the difference to the start in the original
rootkit.

§  Add it to the start of zombie and we get the correct
pointer.

Zombies

þ Return KERN_FAILURE.

§  Original kext must return a value.

§  If we return KERN_SUCCESS, kext will be loaded
and we need to hide or unload it.

§  If we return KERN_FAILURE, kext will fail to load
and OS X will cleanup it for us.

§  Not a problem because zombie is already resident.

Zombies

§  No need to hide from kextstat.

§  No kext related structures.

§  Harder to find (easier now because I'm telling you).

§  Wipe out zombie Mach-O header and there’s only
code/data in kernel memory.

§  It’s fun!

Advantages
Zombies

I	
 eat	
 zombies	

for	
 breakfast!	

Demo
(Dear Spooks: you don't need to break in my
room or computer, sample code will be made

public! #kthxbay)

Zombies

Fire	
 the	

drones!!!	

§  Nemo, Snare and I are going to write a book!

§  About state of the art OS X rootkits (we hope so).

§  Hopefully out in a year.

§  By No Starch Press.

§  Limited $2500 edition with a plug’n’pray EFI
rootkit dongle!

§  Nah, just kidding! Don’t forget to buy it anyway J

Marketing

q Internal structures!

§  Some are stable, others not so much.

§  Proc structure is one of those.

§  We just need a few fields.

§  Maybe find their offsets by disassembling stable
functions?

Problems

q Memory forensics

§  The “new” rootkit enemy.

§  But with its own flaws.

§  In particular the acquisition process.

§  Which we can have a chance to play with.

§  29C3 had a presentation about Windows.

§  Research-in-progress...

Problems

§  And so many others.

§  It's a cat & mouse game.

§  Any mistake can be costly.

§  But it's not that easy for the defensive side.

Problems

§  Improving the quality of OS X kernel rootkits is
very easy.

§  Prevention and detection tools must be researched
& developed.

§  Kernel is sexy but don't forget userland.
§  OS.X/Crisis userland rootkit is powerful!
§  Easier to hide in userland from memory forensics.
§  Read the paper, if you haven't already J.

Conclusions

Read	
 what?	

Where	
 is	
 it?	

§  WE don't know sh*t about OS X malware/rootkits.

§  (AV) industry is generally lagging.

§  Attackers have better incentives to be creative.

§  Defense is very hard – information asymmetry.

§  In particular because it's very easy to stick to a
certain paradigm and hard to get out of it.

§  That requires a lot of practice!

Conclusions

Pra<ce	
 makes	

perfec<on!	

nemo, noar, snare, saure, od, emptydir, korn, g0sh,
spico and all other put.as friends, everyone at
COSEINC, thegrugq, diff-t, #osxre, Gil Dabah from
diStorm, A. Ionescu, Igor from Hex-Rays, Shane
(my assigned drone controller), and you for
spending time of your life listening to me J.

Greets

http://reverse.put.as

http://github.com/gdbinit

reverser@put.as

@osxreverser

#osxre @ irc.freenode.net

Contacts

End!	
 At	
 last…	

Have	
 fun!	

