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Disclaimer

• Turing-complete  is just a way of 
describing what kind of computations an 
environment can be programmed to do
 (T.-c. = any kind we know, in theory)

• Wish we had a more granular scale better 
suited to exploit power
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Any Input is a Program

“Any sufficiently complex input is 
indistinguishable from bytecode; any code 
that takes complex inputs is indistinguishable 
from a VM/interpreter for that bytecode”
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Finite state 
automaton

Reads from tape
Changes state

Writes to tape

Tape:
both

“input”
and 

“program”

http://www.cis.upenn.edu/~dietzd/CIT596/turingMachine.gif
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Compiler’s view:

basic block “State”

“things we know
because of how we got here” 

“things we know + 
a few changes”

Input
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Exploit’s view:

basic block
“Lots more 

State”

“things we know
because of how we got here” 

“things we know + 
a few changes”

???

???
Input
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“X Runs on Y”

• Inputs execute on parsers 

• Packets execute on TCP/IP stacks

• Heaps execute on heap managers

• Binary format metadata execute on Loader/
Dynamic Linker

• PageTables + GDT + IDT execute on MMU
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“Hacking is a practical study of 
computational models’ limits”

• “What Church and Turing did with theorems,  
hackers do with exploits”

• Great exploits (and effective defenses!) 
reveal truths about the target’s 
actual computational model/properties.
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Intro Example:
ABI Metadata Machines

Sarah Inteman/John Kiehl
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Hacker research inspirations

• “Backdooring binary objects, klog [Phrack 56:9]

• “Cheating the ELF”, the grugq [also Phrack 58:5]

• PLT redirection, Silvio Cesare [Phrack 56:7, ...]

• Injecting objects, mayhem [Phrack 61:8]

• ElfSh/ERESI team, http://eresi-project.org/  

• LOCREATE, skape [Uninformed 6, 2007]

• Rewriting (unpacking) of binaries using REL*
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LD.SO CODE 

ELF relocation machine
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LD.SO CODE 

ELF relocation machine
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ELF metadata machines
Relocations + symbols: 
a program in ABI for automaton to patch 
images loaded at a different virtual address:
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R_X86_64_COPY:
memcpy(r.r_offset, s.st_value, s.st_size)
  R_X86_64_64:
*(base+r.r_offset) = s.st_value + 
                     r.r_addend + base
  R_X86_64_RELATIVE:
*(base+r.r_offset) = r.r_addend+base

Symbol Relocation:
Like a VM

RTLD code that processes relocations looks very 
much like implementation of a VM’s bytecode
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RTLD Conditional Branching

Special IFUNC symbol type for indirectly 
linked functions: treated as function pointer 
                iff st_shndx != 0

Resolution function
called at runtime

(if st_shndx)

Friday, May 17, 13



“If” special:  STT_IFUNC 
• Special symbol type for indirect functions; st_value is 

treated as function pointer

• IFUNC symbol only processed as function if st_shndx != 
0 [will use it for cond. branches]
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Unconditional Branches [Loops]
Relocator iterates through REL entries, marking them “done”.  Make 
it loop & unmark, by pointing REL entries at link map’s structures!
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Unconditional Branches [Loops]
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Unconditional Branches [Loops]
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Unconditional Branches [Loops]

Friday, May 17, 13



Unconditional Branches [Loops]

Fix l->l_relocated

Set l->l_prev = l

Set l->l_relro_size = 0

Set l->l_info[DT_RELA] = &next rel to process

Fix l->l_info[DT_RELASZ]

Full TODO:            Note: libc/ld.so version-dependent!
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Unconditional Branches [Loops]

Fix l->l_relocated
{offset =&(l->l_buckets), type = RELATIVE, addend=0}
{offset =&(l->l_direct_opencount), type = RELATIVE, addend=0}
{offset =&(l->l_libname->next), type = RELATIVE, 
                                     addend=&(l->l_relocated) + 4*sizeof(int)}

Set l->l_prev = l
{offset =&(l->l_prev), type = RELATIVE, addend=&l}

Set l->l_relro_size = 0   (etc.)

Set l->l_info[DT_RELA] = &next rel to process

Fix l->l_info[DT_RELASZ]
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Unconditional Branches [Loops]
Finally, ending the loop (skipping past remaining 
relocation entries):
 
    {offset =&end, type = RELATIVE, addend=0}

(end stored on stack, set to 0 )
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Program in ELF metadata
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What can this do?
• NB: dependent on the Glibc version 

(but there aren’t that many)

• Traverse  ld.so’s  link_map of all dynamically 
loaded libraries (under ASLR)

• Resolve symbols & addresses of instructions

• Modify GOT

• Redirect code execution (e.g., obfuscate 
backdoors & other control flow) without 
affecting “native code” sections.
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Hiding “code” in ping

Ping runs suid root, sneak “code” into its ELF metadata:

• Given ”-t <string>” 

•   Usage: -t, --type=TYPE  send TYPE packets

•   Code: if(strcasecmp (<string>, "echo") == 0) ...

Goals:

• Redirect call to strcasecmp to execl:  edit GOT entries

• Prevent call to setuid that drops root privileges: point to retq 

• Work in presence of library randomization (ASLR): find base 
address of glibc at runtime by traversing link_map
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See 29c3 talk by Rebecca “.bx” Shapiro, 
https://github.com/bx/elf-bf-tools
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Page Fault Liberation Army 

(PFLA)*

“Input is (still) a program!”

*) In x86 manuals PFLA stands for
“Page Faulting Linear Address”, 

but this sounds more fashionable
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Let’s take an old and known thing...

(Young James Watt 
was often berated 
for idly watching 
boiling kettles)
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...and see how far 
we can make it go!
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(And where it gets stuck)

Friday, May 17, 13



“Page Fault Liberation” 

l The x86 MMU is not just a look-up table!

l x86 MMU performs complex logic on 
complex data structures

l The MMU has state and transitions that 
brilliant hackers put to unorthodox uses.

l Can it be programmed with its input data?
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Traps are important

• Not usually a part of a program (unless it’s OS 
or debugger), but can be: same memory space

• Traps weave between hardware/microcode & 
software + data tables; e.g., hw reads page 
tables, writes stack, sets up TLB entries

• Set up with regs & complex tables in RAM

• How much computing power is in that?
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CPU

MMU

IDT
GDT

Page
tables Stack

Read Write
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• unmapped/bad memory reference trap, based on 
page tables & (current) IDT

• hardware writes fault info on the stack - where 
it thinks the stack is (address in TSS)

• If we point “stack” into 
page tables, GDT or 
TSS, can we get the “tape” 
of a Turing machine?
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The devil’s in the details  
trapping bits
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From: duartes.org/gustavo/blog/

Global Descriptor Table
(GDT)

Default 
segment 
selector

Segment descriptor:

Address (”offset”) 
must lie within 
segment limit

Type
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0xDEADBEEFLinear Address:

1101111010 1110111011111011011011

37a 2db EEF

0x11111

0x1111 1EEF

Present

l All P bits set

l Ring 3:  All U/S bits have to be set

l Write:  All R/W bits have to be set

l What if we violate these rules?

Physical Address =

Virtual Address Translation 

cr3 + 
4*37a

0x10000

+ 4*2db
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ITS A TRAP
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Hidden state in MMU?
• You bet! And some of it can be 

“programmed”

• Inspiration: PaX’s PAGEEXEC, 
emulation of the NX bit on all CPUs 
since Pentium

• Data page accesses trap when 
instructions are fetched from 
them; see 
http://pax.grsecurity.net/docs/
pageexec.old.txt [cf. Plex86, 1999]
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Trap-hacks  “Design Patterns”
• Overloading #PF for security policy, labeling 

memory (e.g., PaX, OpenWall)

• Combining traps to trap on more complex 
events (OllyBone, “fetch from a page just written”)

• Using several trap bits in different locations 
to label memory for data flow control (PaX 
UDEREF,  SMAP/SMEP use)

• Storing extra state in TLBs (PaX PageExec)

• “Unorthodox” breakpoints,  control flow, ... 
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What’s in a trap handler
(let’s roll our own)
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IDT
entries:

...
8:  #DF

...
14: #PF

...
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Call through a Trap Gate
nested interrupts?32 bit?

New code segment

Like a FAR call of old. If the new segment is in a 
lower (i.e. higher privilege) Ring, we load a new SP.
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Pushes parameters to 
“handler’s stack”

These two are only pushed
 if we changed the stack

“IRET” instruction can return from this 

ESP
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What if this fails?

• Stack invalid?

• Code segment invalid?

• IDT entry not present?

Causes “Double Fault”(#8). “Triple fault” = Reboot

Usually #DF means OS bug, so a lot of state might 
be corrupted (i.e. invalid kernel stack) 
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Hardware Task Switching
We can use it for #PF and #DF 
traps instead of Trap Gates

TR
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Task gate
• (unused) mechanism for hardware tasking

• Reloads (nearly) all CPU state from memory

• Task gate causes task switch on trap

Friday, May 17, 13



(addressed indirectly
 through GDT)

IDT-> GDT->TSS 
It still pushes the error code

IDT

GDT
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Interrupt to Task Gate

1. Save state to location pointed to by TR

2. Find Task (GDT), validate + check Busy=0

3. Load new state (EIP, CR3, stack...) 

4. Push error code

Doublefault

Begin executing new EIP
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Look Ma,  it’s a 
Turing machine!
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A one-instruction machine
Instruction Format:
Label = (X <-Y,A,B)

Label:

   X=Y

   If X<4:

Goto B

 Else

X-=4
Goto A

• “Decrement-Branch-If-
Negative”

• Turing complete (!)

• ““Computer Architecture:  
A Minimalist Perspective” 
by Gilreath and Laplathe 
(~$200) 

• Or Wikipedia :)
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• If EIP of a handler is pointed at invalid 
memory, we get another page fault 
immediately; keep EIP invalid in all tasks

• Var Decrement:  use TSS’ SP,  pushing the stack 
decrements SP by 4.

• Branch:  <4 or not? Implemented by double 
fault when SP cannot be decremented

Implementation sketch:
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Dramatis Personae I 

• One GDT to rule them all

• One TSS Descriptor  per instruction,  
aligned with the end of a page

• IDT is mapped differently,  per instruction

• A target (branch-not-taken) in Int 14,  #PF

• B target (branch taken) in Int 8,  #DF
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Dramatis Personae II

• Higher half of TSS (variables)

• Map A.Y, B.Y (the value we want to load 
for next instruction) at their TSS 
addresses

• map X (the value we want to write) at 
the addr of the current task

• So we have the move and decrement
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• We split these TSS across 
a page boundary

• Variables are stack pointer 
entries in a TSS

• Upper Page:  ESP and 
segments

• Lower Page: EAX, ECX,
  EIP, CR3 (page tables)

Labels: A, B, C, ...
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Let's step through an instruction
(Some details glossed over; 

think of it as a fairy tale, not a lie)
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Label:

   X=Y

   If X<4:

Goto B

 Else

X-=4
Goto A

#PF/DF: “rising edge” of a clock tick 

Instruction by the numbers 
(or, “PFLA fetch-decode-execute” loop) 

Saving old TSS state

Loading new TSS state

Attempt to save fault info to stack
(decrement ESP,  write info to stack)

First instruction of new task:
causes #PF (new EIP is invalid, too)

Failure: #DF (decr ESP is invalid)
Success:  (decr ESP,  write info)

Friday, May 17, 13



IDT

8: Task 0x1F8

14: Task 0x1F8

GDT

0F8: Task, 
Busy

1F8: Task, 
Available

TSS 0

EIP,EAX, etc

SP:0x1000

TSS 1

EIP,EAX, etc

SP:0x4

CPU

EIP:FFFF FFFF

SP:FFFF 0000

TR: 0xF8

#DF

#PF

B

A

X

Y

Initial State
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IDT

8: Task 0x1F8

14: Task 0x1F8

GDT

0F8: Task, 
Busy

1F8: Task, 
Available

TSS 0

EIP,EAX, etc

SP:0x1000

TSS 1

EIP,EAX, etc

SP:0x4

CPU

EIP:FFFF FFFF

SP:FFFF 0000

TR: 0xF8

#DF

#PF

B

A

X

Y

EIP causes Pagefault 
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IDT

8: Task 0x1F8

14: Task 0x1F8

GDT

0F8: Task, 
Busy

1F8: Task, 
Available

TSS 0

EIP,EAX, etc

SP:FFFF 0000

TSS 1

EIP,EAX, etc

SP:0x4

CPU

EIP:FFFF FFFF

SP:FFFF 0000

TR: 0xF8

#DF

#PF

B

A

X

Y

CPU state is saved to current task
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IDT

8: Task 0x1F8

14: Task 0x1F8

GDT

0F8: Task, 
Busy

1F8: Task, 
Busy

TSS 0

EIP,EAX, etc

SP:FFFF 0000

TSS 1

EIP,EAX, etc

SP:0x4

CPU

EIP:FFFF FFFF

SP:0x4

TR: 0x1F8

#DF

#PF

B

A

X

Y

CPU loads interrupt task
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IDT

8: Task 0x0F8

14: Task 0x1F8

GDT

0F8: Task, 
Busy

1F8: Task, 
Busy

TSS 2

EIP,EAX, etc

SP:1234 5678

TSS 0

EIP,EAX, etc

SP:FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x4

TR: 0x1F8

New page tables
point to new things!

#DF

#PF

B

A

A.Y

X

(duplicate)
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“Implementation Problem”
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That one pesky busy bit...

CPU won’t load 
task if this is set
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That one pesky busy bit...

CPU won’t load 
task if this is set

We need to overwrite it. Luckily, the CPU always 
saves all the state (even if not dirty).

So: map the lower half of TSS over GDT, so that 
saved EAX,ECX from TSS overwrite descriptor;

same content, only busy bit cleared.
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Dealing with that bit 
needs a nuclear 

option...
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IDT

8: Task 0x0F8

14: Task 0x1F8

GDT

0F8: Task, 
Available

1F8: Task,
Available

TSS 2

EIP,EAX, etc

SP:1234 5678

TSS 0

EIP,EAX, etc

FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x4

TR: 0x1F8

#DF

#PF

B

A Lower half of TSS is 
mapped over GDT descriptor

=>
saving the old state overwrites

 the GDT entry busy bit!
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IDT

8: Task 0x0F8

14: Task 0x1F8

GDT

0F8: Task,
Available

1F8: Task,
Available

TSS 2

EIP,EAX, etc

SP: 1234 5678

TSS 0

EIP,EAX, etc

FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x0

TR: 0x1F8

#DF

#PF

B

A

#PF error code is pushed:
Decrements ESP
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IDT

8: Task 0x0F8

14: Task 
0x1F8

GDT

0F8: Task,
Available

1F8: Task, 
Busy

TSS 2

EIP,EAX, etc

SP: 1234 5678

TSS 0

EIP,EAX, etc

FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x0

TR: 0x1F8

#DF

#PF

B

A

Another Page Fault, 
Saves state
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IDT

8: Task 0x0F8

14: Task 0x1F8

GDT

0F8: Task,
Busy

1F8: Task, 
Available

TSS 2

EIP,EAX, etc

SP: 0

TSS 0

EIP,EAX, etc

FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x0

TR: 0x0F8

#DF

#PF

B

A

But we can't push, 
So #DF
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IDT

8: Task 0x0F8

14: Task 0x1F8

GDT

0F8: Task,
Available

1F8: Task, 
Available

TSS 2

EIP,EAX, etc

SP: 0

TSS 0

EIP,EAX, etc

FFFF 0000

CPU

EIP:FFFF FFFF

SP:FFFF 0000

TR: 0x0F8

#DF

#PF

B

A

Loaded new state from #DF
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And now to face the uglier truth...
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IDT

8: Task 0x0F8

14: Task 
0x2F8

GDT

0F8: Task, 
Busy

1F8: Task, 
Busy

2F8: Task, 
available

TSS 2

EIP,EAX, etc

SP:1234 5678

TSS 0

EIP,EAX, etc

SP:FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x4

TR: 0x1F8

IDT trick must take care of 
task switch logic checking TR contents
=> must duplicate GDT descriptors 
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Meanwhile, on the FSB

Write 0x8 0xFFFF 0000

Read 0x1008 0x4

Write 0x2008 0x0

Read 0x8 0xFFFF 0000

(Slightly redacted)

And they all compute happily ever after 
(for all we know) 
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What restrictions do we 
have?

• Needs kernel access to set up :)

• No two double faults in a row

• Can only use our one awkward instruction

• Can only work with SP of TSS aligned 
across page (very limited coverage of phys. 
mem) 
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White Hat Takeaway

• Check how your tools handle old/unused 
CPU features

• Don’t trust the spec
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Black Hat Takeaway

• A really nice, big Red Pill

• With more work, you can probably make it 
work differently in Analysis tools 

• Or just shoot down the host
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Strawhat Takeaway

• It’s a weird machine! (And we like them)

• We are working on 64 bit, better tools

• Compiler, debugger

• See how it works on different hardware? 

Friday, May 17, 13



“There is never enough time. 
Thank you for yours!”

--Dan Geer

https://github.com/jbangert/trapcc

https://github.com/bx/elf-bf-tools
@bxsays

@JulianBangert
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