Le Chat et le Communisme

- v-'

\WscTPOB Lor 3
b, SR COBET llmwm;,%
.

LN
, /8; jé/ e *-'3\}3\\ \
¥ /4 -"'_‘ o ".. \”

.gﬁ" 4

;UDEA\/\TEL\\
BO BCECOI03HL

“Any Input Is a Program™:
Weird Machines in ABI and

Architecture Metadata

Julian Bangert
Rebecca ‘.bx’ Shapiro
Sergey Bratus

Trust Lab
Dartmouth College

“Weird machines all the way down”

Friday, May 17, 13

Disclaimer

® Turing-complete is just a way of
describing what kind of computations an
environment can be programmed to do
(T.-c. = any kind we know, in theory)

® Wish we had a more granular scale better
suited to exploit power

Friday, May 17, 13

Any Input is a Program

“Any sufficiently complex input is
indistinguishable from bytecode; any code
that takes complex inputs is indistinguishable
from aVM/interpreter for that bytecode”

Finite state Reads from tape
automaton Changes state

http://www.cis.upenn.edu/~dietzd/CIT596/turingMachine.gif

Friday, May 17, 13

http://www.cis.upenn.edu/~dietzd/CIT596/turingMachine.gif
http://www.cis.upenn.edu/~dietzd/CIT596/turingMachine.gif

Compiler’s view:

“things we know

l because of how we got here”

N

.

basic block

J

| “State”
h

Input
“things we know +

a few changes”

Exploit’s view:

“things
because of he

now
we got here”

»\ l —} “Lots more

basic block State”

- \\

a fews

cgaz;w-l-

“X RunsonY”

® |nputs execute on parsers
® Packets execute on TCP/IP stacks
® Heaps execute on heap managers

® Binary format metadata execute on Loader/
Dynamic Linker

® PageTlables + GDT + IDT execute on MMU

Friday, May 17, 13

“Hacking is a practical study of
computational models’ limits”

® “What Church and Turing did with theorem:s,
hackers do with exploits”

® Great exploits (and effective defenses!)
reveal truths about the target’s
actual computational model/properties.

Intro Example:
AB| Metadata Machines

k%4

oA StV =) v’

' LA .) =9 \\n',’\. ‘ ‘ ’V
- ML 1) Ay " A - B .‘ o
_7‘.% L P S . s “ﬂ,g..‘,‘ N 7

A dge M e S O NN,

)

- ¥ -
TS,
‘

;nb- 2 _'.:f\"f can b AL e

=

J}J;}ﬂ-g;?z#'v .‘;;'j:;‘ ,ﬁf
_ ﬁff ,if et A i AR L ,ﬁ%;ﬁ Sarah Inteman/John Kiehl

Friday, May 17, 13

Hacker research inspirations

“Backdooring binary objects, klog [Phrack 56:9]
“Cheating the ELF”, the grugq [also Phrack 58:5]
PLT redirection, Silvio Cesare [Phrack 56:7/,...]
Injecting objects, mayhem [Phrack 61:8]
EIfSh/ERESI team, http://eresi-project.org/
LOCREATE, skape [Uninformed 6,2007]

® Rewriting (unpacking) of binaries using REL*

http://eresi-project.org
http://eresi-project.org

ELF relocation machine

executable —

libc... interesting code dwells here -

LD.SO CODE

linker/loader

|ld.so's data and heap
» » metadata to process loaded ELFobjects

(exec F{Tb0 b—eee{TWbn }{TTbc }—{"Tdso |

Friday, May 17, 13

libc... interesting code dwells here

ELF relocation machine

linker/loader

LD.SO CODE

; |ld.so's data and heap
» metadata to process loaded ELFobjects

/

weolibn - libc - ldso |

Friday, May 17, 13

ELF metadata machines

Relocations + symbols:
a program in ABI| for automaton to patch
images loaded at a different virtual address:

/

typedef struct {
uint32_t st _name;
unsigned char st_info;
unsigned char st_other;

typedef struct {
Elf64 Addrr_offset;

uinté4_t r_info; // contains type and symbol uinti6 t st shndx:
int64_t r_addend, number Elf64 Addr st value;
} EIf64 Rela; uinté4 t st _size;
—— } EIf64 _Sym;
]
Num: Value Size Type Bind Vis Ndx Name

7407: 0000000000376d98 8 OBJECT GLOBAL DEFAULT 31 stdin
7408: 00000000000525¢c0 42 FUNC GLOBAL DEFAULT 12 putc

Friday, May 17, 13

int64 t
} EIf64 Rela;

R_X86_64_COPY:
memcpy(r.r_offset,

R_X86_64_64:
*(base+r.r_offset)

R_X86_64_RELATIVE:
*(base+r.r_offset)

Symbol Relocation: Name Value

Likea VM

typedef struct {
Elf64 Addr r_offset;

uinté4 t r_info; // contains jype and symbol
r _addend;

S

Field Calculation

R_386_NONE 0 | none none

R 386 32 1 |word32 | S + A

R 386 PC32 2 |word32 | S+ A-P

R _386_GOT32 3 |word32 |G+ A-P

R 386 PLT32 4 |word32 |L +A-P

R 386 COPY 5 | none | none

R_386 GLOB_DAT 6 | word32 | S
number g 3s owp stor | 7 | word®2 | s

R 386 RELATIVE 8 |word32 | B + A

R 386 _GOTOFF 9 |word32 | S + A - GOT

R_386_GOTPC 10 | word32 | GOT + A - P

.st_value, s.st_si1ze)

s.st_value +
r.r_addend + base

r.r_addend+base

RTLD code that processes relocations looks very
much like implementation of aVM’s bytecode

Friday, May 17, 13

RTLD Conditional Branching

Special IFUNC symbol type for indirectly

linked functions: treated as function pointer
iff st_shndx != 0

#include <stdio.h>

int foo (void) __attribute___ ((ifunc ("foo_ifunc"))); Resolution function
static int global = 1;

static int f1 (void) { return 0; } called at runtime
static int f2 (void){ return 1; } / .

void *foo_ifunc (void) { return global ==12f1:f2} (if st_shndx)

int main () { printf ("%d\n", foo()); }

43: 0000000000400524 11 FUNC LOCAL DEFAULT 13 f1

44: 000000000040052f 11 FUNC LOCAL DEFAULT 1312

57: 000000000040053a 29 FUNC GLOBAL DEFAULT 13 foo_ifunc
62: 000000000040053a 29 IFUNC GLOBAL DEFAULT 13 foo

Friday, May 17, 13

“If” special: STT_IFUNC

® Special symbol type for indirect functions; st_value is
treated as function pointer

® |FUNC symbol only processed as function if st_shndx !=
O [will use it for cond. branches]

#include <stdio.h>

int foo (void) __attribute__ ((ifunc ("foo_ifunc")));
static int global = 1;

static int f1 (void) { return O; }

static int f2 (void){ return 1; }

void *foo_ifunc (void) { return global ==1 ? f1 : 12; }
int main () { printf ("%d\n", foo()); }

43: 0000000000400524 11 FUNC LOCAL DEFAULT 13f1

44: 000000000040052f 11 FUNC LOCAL DEFAULT 1312

57: 000000000040053a 29 FUNC GLOBAL DEFAULT 13 foo_ifunc
62: 000000000040053a 29 IFUNC GLOBAL DEFAULT 13 foo

Friday, May 17, 13

Unconditional Branches [Loops]

Relocator iterates through REL entries, marking them “done”. Make
it loop & unmark, by pointing REL entries at link map’s structures!

do
{

struct libname_list *Inp = I->|_libname->next;

while (__builtin_expect (Inp != NULL, 0))

{
Inp->dont_free = 1; TODO:

Inp = Inp->next;

\ - set |->| prev = |

if (1''= &GL(dl_rtild _map))
_dl _relocate _object (I, I->|_scope, GLRO(dI lazy) ? RTLD LAZY : 0,
consider_profiling);

| = 1->| prev;

}

while (1); exec <+ - Ilib0 <« +eeee » Jibn « +» libc -« - Id.so

Friday, May 17, 13

Unconditional Branches [Loops]

void
_dl _relocate object (struct link_map *1, struct r_scope elem *scope]],
int reloc_mode, int consider_profiling)

{ TODO:
if (I->1_relocated) - set |->| prev =1
return; - fix I->|_relocated

ELF_DYNAMIC_RELOCATE (I, lazy, consider_profiling);

)’.‘.Mark the object so we know this work has been done. */
I->|_relocated = 1;

[* In case we can protect the data now that the relocations are
done, doit. */

if (I->l_relro_size != 0)
_dl_protect_relro (1),

-

Friday, May 17, 13

Unconditional Branches [Loops]

void

_dl_relocate object (struct link_map *1, struct r_scope elem *scope(],
int reloc_mode, int consider_profiling)

{

if (I->|_relocated)
return;

"ELF_DYNAMIC_RELOCATE (I, lazy, consider_profiling)

}’.‘.Mark the object so we know this work has been done. */
I->|_relocated = 1;

[* In case we can protect the data now that the relocations are

done, doit. */ _
if (I->1_relro_size !=0) TODO: —
- set |I->|_prev = |

_dl_protect_relro (l); - fix I->| relocated

- - set I->|_relro_size =0

Friday, May 17, 13

Unconditional Branches [Loops]

do
{

struct libname _list *Inp = |->|_libname->next;

while (__ builtin_expect (Inp != NULL, 0))

{
Inp->dont_free = 1; TODO:
Inp = |np->next; - sc?t I->I_prev = |
} - fix I->|_relocated

- set I->| relro_size =0
if (1 '= &GL(dl _rtld_map))
_dl_relocate_object (I, I->|_scope, GLRO(dI lazy) ? RTLD LAZY : 0,
consider_profiling);

| = |->| prev;

}
while (l);

Friday, May 17, 13

Unconditional Branches [Loops]

Full TODO: Note: libc/ld.so version-dependent!

Fix 1->1 relocated

Set 1->1_prev =1

Set 1->1 relro size =0

Set 1->1_info[DT_RELA]| = &next rel to process

Fix 1->1_info[DT_RELASZ]

Friday, May 17, 13

Unconditional Branches [Loops]

¥ Fix 1->] relocated
{offset =&(I->| _buckets), type = RELATIVE, addend=0}
{offset =&(l->]_direct_opencount), type = RELATIVE, addend=0}
{offset =&(I->]_libname->next), type = RELATIVE,
addend=&(l->l_relocated) + 4*sizeof(int)}

* Set1->I_prev =1
{offset =&(I->|_prev), type = RELATIVE, addend=&l}

¥ Setl->l_relro_size =0 (etc.)
% Set I->1_info[DT_RELA] = &next rel to process

% Fix 1->1_info[DT_RELASZ]

Friday, May 17, 13

Unconditional Branches [Loops]

Finally, ending the loop (skipping past remaining
relocation entries):

{offset =&end, type = RELATIVE, addend=0}

(end stored on stack, set to 0)

for (; r < end; ++r)
{
EIfW(Half) ndx = version[ELFW(R_SYM) (r->r_info)] & Ox7fff;
elf_machine_rel (map, r, &symtab[ELFW(R_SYM) (r->r_info)],
&map->|_versions[ndx],
(void *) (I_addr + r->r_offset));

Friday, May 17, 13

Program in ELF metadata

.aynsym table

(empty)
Original dynsym 0
Original dynsym 1

Original dynsym n

Address tape head is pointing at
Copy of tape head's value
Address of previous sym's value
IFUNC of gadget that returns O

(A few other symbols needed for
bookkeeping, like library addrs)

rela.dyn table

Brainfuck instruction O

Brainfuck instruction n

nstructions that clean up link_map data
nstructions to force branch to next rel entry
nstructions to finish cleaning link_map data
Original .rela.dyn entry O

Original .rela.dyn entry m

Friday, May 17, 13

What can this do!?

NB: dependent on the Glibc version
(but there aren’t that many)

Traverse Ild.so’s link _map of all dynamically
loaded libraries (under ASLR)

Resolve symbols & addresses of instructions
Modify GOT

Redirect code execution (e.g., obfuscate
backdoors & other control flow) without
affecting “native code” sections.

Hiding “code” in ping

Ping runs suid root, sneak “code” into its ELF metadata:

® Given -t <string>"

® Usage:-t, --type=TYPE send TYPE packets

® Code:if(strcasecmp (<string>, "echo") == 0) ...

Goals:

® Redirect call to strcasecmp to execl: edit GOT entries

® Prevent call to setuid that drops root privileges: point to retq

® Work in presence of library randomization (ASLR): find base
address of glibc at runtime by traversing link_map

Friday, May 17, 13

Relocation section ".rela.p' at offset 0xf3a8 contains 14 entries:
Offset Info Type

Sym. Value Sym. Name + Addend

00000060dfe0 002d00000006 R_X86_64_GLOB_DAT 0000000000000000 __gmon_start__ +0
00000060e9e0 004e00000005 R_X86_64 _COPY 000000000060e9e0 __ progname + 0
00000060e9f0 004b00000005 R_X86_64_COPY 000000000060e9f0 stdout + 0
00000060e9f8 005100000005 R_X86_64_COPY 000000000060e9f8 __progname_full + 0
005600000005 R_X86_64_COPY 000000000060ea00 stderr + 0

00000060ea00
00000060eb40
00000060eb40
00000060eb40
00000060eb40
00000060eb40
00000060eb40
00000060eb40
00000060e028
00000060e218

000000000005 R_X86_64_COPY
000000000001 R_X86_64 64
000000000005 R_X86_64_COPY
000000000001 R_X86_64_64
000000000005 R_X86_64 COPY
000000000005 R_X86_64_COPY
000000000001 R_X86_64_64
000000000001 R_X86_64_64

000000000008 R_X86_64_RELATIVE

Symbol table '.sym.p' contains 90 entries:

Num: Value

Size Type Bind Vis

Ndx Name
0: 000000000060dff0 8 FUNC LOCAL DEFAULT UND

0000000000000000
0000000000000018
0000000000000000
0000000000000018
0000000000000000
0000000000000000
00000000000be6el
0000000000000000
0000000000401dc2

See 29c3 talk by Rebecca “.bx" Shapiro,

https://github.com/bx/elf-bf-tools

Friday, May 17, 13

https://github.com/bx/elf-bf-tools
https://github.com/bx/elf-bf-tools

Page Fault Liberation Army
(PFLA)™

“Input is (still) a program!”

*) In x86 manuals PFLA stands for
“Page Faulting Linear Address”,

but this sounds more fashionable

ing...

Let’s take an old and known th

(Young James WVatt
was often berated

idly watching
iling kettles)

for

bo

)

Z o
g 1N
m&

. &
:)
b

Friday, May 17, 13

...and see how far
we can make it go!

Friday, May 17, 13

(And where it gets stuck)

Friday, May 17, 13

“Page Fault Liberation”

* The x86 MMU is not just a look-up table!

* x86 MMU performs complex logic on
complex data structures

* The MMU has state and transitions that
brilliant hackers put to unorthodox uses.

* Can it be programmed with its input data!’

Traps are important

Not usually a part of a program (unless it's OS
or debugger), but can be: same memory space

Traps weave between hardware/microcode &
software + data tables; e.g., hw reads page
tables, writes stack, sets up TLB entries

Set up with regs & complex tables in RAM

How much computing power is in that?

Friday, May 17, 13

Friday, May 17, 13

® unmapped/bad memory reference trap, based on
page tables & (current) IDT

® hardware writes fault info on the stack - where
it thinks the stack is (address in TSS)

® |f we point “stack’” into
page tables, GDT or
TSS, can we get the “tape” |

.. e .

of a Turing machine?

The devil’s in the details

trapping bits

63 P .
‘ dbyres | mase 430 | Type |§i7 1 Base (16-23)
Segment deSCI"IptOI”: (16-19)

4 bytes Base (©-15) Limit (©-15)

31 15 (%)

oot | Global Descriptor Table
< (GDT)

Segment Descriptor

~—1>| Segment Descriptor ~

Segment Descriptor

Default ¢ T J | Address (’offset”)
Segment n+degxdt*r <« gdtr Ad::::s: mUSt Iie Within

selector A segment limit
/_}{ Index: 14 2

€S register: ©oXx

Instruction
JmMp Base address + offset Ligeggeﬁggggss
0x08048393 X
‘ R
Memory Address
(offset)
9x08048393
. . From: duartes.org/gustavo/blog/

Friday, May 17, 13

cr3 +

Virtual Address Translation

4%37a <

Address of page table OX I OOOO

lgnored

+ 4%2db <

Address of 4KB page frame OXI I I I I

Linear Address: OxDEADBEEF
|OTOTIO01 1 [11OFITON! ||
2db EEF —
Present
4
Physical Address = [Ox | | | | | EEF

e All P bits set
* Ring 3: All U/S bits have to be set
* Write: All R/W bits have to be set

* What if we violate these rules?

Friday, May 17, 13

ITSAT

Hidden state in MMU?

® You bet! And some of it can be
“programmed”

¢ Inspiration: PaX’s PAGEEXEC,

emulation of the NX bit on all CPUs
since Pentium

® Data page accesses trap when
instructions are fetched from

them; see
http://pax.grsecurity.net/docs/

pageexec.old.txt [cf. Plex86, 1999]

Friday, May 17, 13

http://pax.grsecurity.net/docs/pageexec.old.txt
http://pax.grsecurity.net/docs/pageexec.old.txt
http://pax.grsecurity.net/docs/pageexec.old.txt
http://pax.grsecurity.net/docs/pageexec.old.txt

Trap-hacks “Design Patterns”

e Overloading #PF for security policy, labeling
memory (e.g., PaX, OpenWVall)

¢ Combining traps to trap on more complex
events (OllyBone, “fetch from a page just written”)

® Using several trap bits in different locations

to label memory for data flow control (PaX
UDEREF, SMAP/SMEP use)

® Storing extra state in TLBs (PaX PageExec)

® “Unorthodox” breakpoints, control flow, ...

What’s in a trap handler
(let’s roll our own)

IDT
entries:

Task Gate

8: #DF

|4: #PF

31 16 15 14 13 12 8 7
D
Pl P 00101
L
31 16 15
TSS Segment Selector
Interrupt Gate
31 16 15 14 13 12 8 7
D
Offset 31..16 PlPp|0OD110|00
L
31 16 15
Segment Selector Offset 15..0
Trap Gate
31 16 15 14 13 12 8 7
D
Offset 31..16 PlPp|OD111(00
L
31 16 15

Segment Selector

Offset 15..0

Friday, May 17, 13

Call through a Trap Gate

32 bit? .
nested interrupts!?
Trap Gate
31 16 15 14 13 12 8 /7 5 4 0
D \ 4
Offset 31..16 Plp |OD111(0 00 4
L
31 16 15 0
Segment Selector Offset 15..0 0
L.

\ New code segment

Like a FAR call of old. If the new segment is in a
lower (i.e. higher privilege) Ring, we load a new SP.

Friday, May 17, 13

ESP —

Pushes parameters to
“handler’s stack™

Handler’s Stack

SS

ESP

These two are only pushed
if we changed the stack

EFLAGS

CS

ElP

Error Code

<

“IRET” instruction can return from this

What if this fails?

® Stack invalid?
® Code segment invalid?

® |IDT entry not present!?

Causes “Double Fault”(#8). Triple fault” = Reboot

Usually #DF means OS bug, so a lot of state might
be corrupted (i.e. invalid kernel stack)

Hardware Task Switching

We can use it for #PF and #DF
traps instead of Trap Gates

Code
| Segment

Task-State Data
Segment »| Segment
(155) SStack
egment
o (Current Priv.
- Level)
»
Stack Seg.
» Priv. Level 0

Stack Seg.

» Priv. Level 1
T R Task Register Stack

» Segment
CR3 (Priv. Level 2)

Friday, May 17, 13

Task gate

® (unused) mechanism for hardware tasking
® Reloads (nearly) all CPU state from memory

® Task gate causes task switch on trap

Task Gate
I 161514 1312 8 7 0
)
" [O 0 90 4 4
|

31 615 J

TSS Segment Sedector 0

Friday, May 17, 13

IDT

Task Gate
16 15 14 13 12

IDT-> GDT->TSS

Pl |OOD0 0 ‘ 4
: |
31 1615 0
- |t still pushes the error code
(addressed indirectly
31 15

th o ugh G DT) /O Map Base Address Reserved T|100
Reserved LDT Segment Selector 26
G DT Reserved GS 92
TSS Descriptor r Reserved FS 88

31 242322212019 1615141312 11 g8 7 0 Reserved DS 84
{ A Limit D | T Reserved SS 80

Base31:24 |G|0|0|V| 154g |P| P Lt Base 23:16 |4 Reserved cs 76
1 |_l Reserved ES 72
31 16 15 0 EDI 68
ESI 64
Base Address 15:00 Segment Limit 15:00 0 EBP 60

ESP 56

EBX 52
AVL Available for use by systeNysoftware EDX 48
B Busy flag ECX 44
BASE Segment Base Address EAX 40
DPL Descriptor Privilege Level EFLAGS 36
G Granularity — 32

LIMIT Segment Limit

P Segment Present LG) 28
TYPE Segment Type Ao a2 2
ESP2 20
Reserved SS1 16
ESP1 12

Reserved SS0 8

ESPO 4

Reserved Previous Task Link 0

Friday, May 17, 13

Interrupt to Task Gate

|. Save state to location pointed to by TR

2. Find Task (GDT), validate + check Busy=0

3. Load new state (EIP, CR3, stack...)

4. Push error code

Begin executing new EIP

Doublefault

Look Ma, it’s a
Turing machine!

Friday, May 17, 13

Bochs x86-64 emulator, http://bochs.sourceforge.net/

Friday, May 17, 13

A one-instruction machine

Instruction Format: .
Label = (X <-Y,A,B) ® “Decrement-Branch-If-

Negative”
® Turing complete (!)

® “.Computer Architecture:
A Minimalist Perspective”
by Gilreath and Laplathe
(~$200)

® Or Wikipedia :)

Implementation sketch:

® |f EIP of a handler is pointed at invalid
memory, we get another page fault
immediately; keep EIP invalid in all tasks

® Var Decrement: use TSS’ SP, pushing the stack
decrements SP by 4.

® Branch: <4 or not! Implemented by double
fault when SP cannot be decremented

Dramatis Personae |

One GDT to rule them all

One TSS Descriptor per instruction,
aligned with the end of a page

IDT is mapped differently, per instruction
A target (branch-not-taken) in Int 14, #PF

B target (branch taken) in Int 8, #DF

Dramatis Personae |l

® Higher half of TSS (variables)

® Map AY,B.Y (the value we want to load
for next instruction) at their TSS
addresses

® map X (the value we want to write) at
the addr of the current task

® So we have the move and decrement

® We split these TSS across
a page boundary

® Variables are stack pointer

entries in a TSS ﬁ

® Upper Page: ESP and
segments

® |ower Page: EAX, ECX,
EIP, CR3 (page tables)

Labels:A, B, C, ... *

31

15

/O Map Base Address Reserved
Reserved LDT Segment Selector
Reserved GS
Reserved FS
Reserved DS
Reserved SS
Reserved csS
Reserved ES

EDI
ESI
EBP
ESP
EBX
EDX
ECX
EAX
EFLAGS
EIP
CR3 (PDBR)
Reserved SS2
ESP2
Reserved SS1
ESP1
Reserved . SS0
ESPO
Reserved Previous Task Link

100

92
88

80
76
72

60

52
48

32
28
24
20

16
12

Friday, May 17, 13

| DUN 1 AlWAYS

BUT WHEN‘I I]ﬂ IT S

ITH(]UT INS‘TRUGTIUN)

Let's step through an instruction

(Some details glossed over;
think of it as a fairy tale, not a lie)

Instruction by the numbers
(or, “PFLA fetch-decode-execute” loop)

#PF/DF:“rising edge” of a clock tick< -+
Saving old TSS state
Loading new TSS state

Attempt to save fault info to stack
(decrement ESP, write info to stack)

Failure: #DF (decr ESP is invalid) ---
Success: (decr ESP, write info)

First instruction of new task:
causes #PF (new EIP is invalid, too)

Friday, May 17, 13

EIP FFFF FFFF

TR. OxF8

#DF 8: Task Ox1F8

#PF
A

TSS 0

OF8: Task,
Busy EIPEAX, etc

TSS 1

EIPEAX, etc

Initial State

Friday, May 17, 13

OF8: Task,
TR: OxF8 Busy EIPEAX, etc

#DF 8: Task Ox1F8

EIPEAX, etc

Y
EIP causes Pagefault

Friday, May 17, 13

TSS 0

\ El P, EAX, etc

X-

_

#DF 8: Task Ox1F8
B

#PF
A

EIPEAX, etc

Y-

CPU state is saved to current task

Friday, May 17, 13

TSS 0

\ ElP’ EAX, etC

1F8: Task,
Busy X
#DF 8: Task Ox1F8 /
B

#PF
A

Y

CPU loads interrupt task

Friday, May 17, 13

Ghs TSSO
SP:0x4
TR: Ox1F8 T
1F8; Task,
Busy AY

(duplicate)

#DF 8: Task OxOF8
B

A

EIP,EAX, etc

New page tables v
point to new things! -

Friday, May 17, 13

“Implementation Problem™

Friday, May 17, 13

That one pesky busy bit...

a2
.~

TSS Descriptor

242322 212019 16 15 14 13 12 11 |_|a 7

: laloloaldl Limit D
Base 31:24 ;G.. v.. 1516 I T

0|1

Base 23:16

31

1615

Base Address 15:00

Segment Limit 15:00

.~ CPU won’t load

AVL Available for use by system software

B Busy flag
BASE Segment Base Address
DPL Descriptor Privilege Level

G Granularity
LIMIT Segment Limit
P Segment Present

TYPE Segment Type

task if this is set

Friday, May 17, 13

That one pesky busy bit...

TSS Descrlptor

31 242322 212019 16 15 14 13 12 11
A D
Base 31:24 G|O|O . *"}é P 5’ A iB Base 23:16 -
31
Sase Address 15:00 Segment Limit 15:00 C PU WO n ’t Ioad
AVL Available for use by system software tas I(if th i S is S et
B Busy flag

BASE Segment Base Address
DPL Descriptor Privilege Level

G Granularity
LIMIT Segment Limit
P Segment Present

TYPE Segment Type

We need to overwrite it. Luckily, the CPU always
saves all the state (even if not dirty).

So: map the lower half of TSS over GDT, so that

saved EAX,ECX from TSS overwrite descriptor;
same content, only busy bit cleared.

Friday, May 17, 13

Dealing with that bit
needs a nuclear
option...

SP:0x4
TR: Ox1F8

\

1F8: Task,
Available

#DF 8: Task OxOF8
B

A Lower half of TSS is EIP.EAX, etc

mapped over GDT descriptor
=>

saving the old state overwrites -

the GDT entry busy bit!

Friday, May 17, 13

bt TSSO
SP:0x0
TR: Ox1F8 T
1F8: Task,
Available

#DF 8: Task OxOF8
B

A

EIP,EAX, etc

#PF error code is pushed:

Decrements ESP -

Friday, May 17, 13

SP:0x0
TR: Ox1F8

1F8: Task,
Busy

#DF| 8: Task OxOF8

B

#PF
A

Another Page Fault,
Saves state

TSS 2

EIP,EAX, etc

Friday, May 17, 13

SP:0x0
TR: OXOF8 T
1F8: Task,
Available
#DF 8: Task 0xOF8
B
HPF TSS 2
A

EIREAX, etc
But we can't push,

T

Friday, May 17, 13

ol TSSO
SP:FFFF 0000
TR: OxOF8 T
1F8: Task,
Avallable

#DF 8: Task OxOF8

B

A

EIP,EAX, etc

Loaded new state from #DF -

Friday, May 17, 13

nd now to face the uglier truth...

T

‘. ".‘..‘v
PET G ﬂ. k2

-«m

”, % .‘
".,..4.:‘."7 oA s T TR = . r

"y
’.’&"-7%‘"‘? -

Friday, May 17, 13

SP:0x4

TR: Ox1F8

1F8: Task,
Busy

2F8: Task,
available

8: Task OxOF8

IDT trick must take care of
task switch logic checking TR contents
=> must duplicate GDT descriptors

TSS 2

EIP,EAX, etc

Friday, May 17, 13

Meanwhile, on the FSB

(Slightly redacted)

Write 0x8 OxFFFF 0000
Read 0x1008 Ox4
Write 0x2008 0x0

Read 0x8 OxFFFF 0000

And they all compute happily ever after
(for all we know)

Friday, May 17, 13

What restrictions do we
have!

® Needs kernel access to set up :)
® No two double faults in a row
® Can only use our one awkward instruction

® Can only work with SP of TSS aligned
across page (very limited coverage of phys.
mem)

7

IN Soviet Russl

Red Plill Takes you

White Hat lakeaway

® Check how your tools handle old/unused
CPU features

® Don't trust the spec

Black Hat Takeaway

® A really nice, big Red Pill

® With more work, you can probably make it
work differently in Analysis tools

® Or just shoot down the host

Strawhat Takeaway

® |t's a weird machine! (And we like them)
® VWe are working on 64 bit, better tools
® Compiler, debugger

® See how it works on different hardware?

(@bxsays
https://github.com/bx/elf-bf-tools

@)]ulianBangert
https://qithub.com/jbangert/trapcc

“There is never enough time.
Thank you for yours!”

—-Dan Geer

https://github.com/jbangert/trapcc
https://github.com/jbangert/trapcc
https://github.com/bx/elf-bf-tools
https://github.com/bx/elf-bf-tools

