
Le Chat et le Communisme

Friday, May 17, 13

“Any Input Is a Program”:
Weird Machines in ABI and

Architecture Metadata

Julian Bangert
Rebecca ‘.bx’ Shapiro

Sergey Bratus

Trust Lab
Dartmouth College

“Weird machines all the way down”
Friday, May 17, 13

Disclaimer

• Turing-complete is just a way of
describing what kind of computations an
environment can be programmed to do
 (T.-c. = any kind we know, in theory)

• Wish we had a more granular scale better
suited to exploit power

Friday, May 17, 13

Any Input is a Program

“Any sufficiently complex input is
indistinguishable from bytecode; any code
that takes complex inputs is indistinguishable
from a VM/interpreter for that bytecode”

Friday, May 17, 13

Finite state
automaton

Reads from tape
Changes state

Writes to tape

Tape:
both

“input”
and

“program”

http://www.cis.upenn.edu/~dietzd/CIT596/turingMachine.gif
Friday, May 17, 13

http://www.cis.upenn.edu/~dietzd/CIT596/turingMachine.gif
http://www.cis.upenn.edu/~dietzd/CIT596/turingMachine.gif

Compiler’s view:

basic block “State”

“things we know
because of how we got here”

“things we know +
a few changes”

Input

Friday, May 17, 13

Exploit’s view:

basic block
“Lots more

State”

“things we know
because of how we got here”

“things we know +
a few changes”

???

???
Input

Friday, May 17, 13

“X Runs on Y”

• Inputs execute on parsers

• Packets execute on TCP/IP stacks

• Heaps execute on heap managers

• Binary format metadata execute on Loader/
Dynamic Linker

• PageTables + GDT + IDT execute on MMU

Friday, May 17, 13

“Hacking is a practical study of
computational models’ limits”

• “What Church and Turing did with theorems,
hackers do with exploits”

• Great exploits (and effective defenses!)
reveal truths about the target’s
actual computational model/properties.

Friday, May 17, 13

Intro Example:
ABI Metadata Machines

Sarah Inteman/John Kiehl

Friday, May 17, 13

Hacker research inspirations

• “Backdooring binary objects, klog [Phrack 56:9]

• “Cheating the ELF”, the grugq [also Phrack 58:5]

• PLT redirection, Silvio Cesare [Phrack 56:7, ...]

• Injecting objects, mayhem [Phrack 61:8]

• ElfSh/ERESI team, http://eresi-project.org/

• LOCREATE, skape [Uninformed 6, 2007]

• Rewriting (unpacking) of binaries using REL*

Friday, May 17, 13

http://eresi-project.org
http://eresi-project.org

LD.SO CODE

ELF relocation machine

Friday, May 17, 13

LD.SO CODE

ELF relocation machine

Friday, May 17, 13

ELF metadata machines
Relocations + symbols:
a program in ABI for automaton to patch
images loaded at a different virtual address:

Friday, May 17, 13

R_X86_64_COPY:
memcpy(r.r_offset, s.st_value, s.st_size)
 R_X86_64_64:
*(base+r.r_offset) = s.st_value +
 r.r_addend + base
 R_X86_64_RELATIVE:
*(base+r.r_offset) = r.r_addend+base

Symbol Relocation:
Like a VM

RTLD code that processes relocations looks very
much like implementation of a VM’s bytecode

Friday, May 17, 13

RTLD Conditional Branching

Special IFUNC symbol type for indirectly
linked functions: treated as function pointer
 iff st_shndx != 0

Resolution function
called at runtime

(if st_shndx)

Friday, May 17, 13

“If” special: STT_IFUNC
• Special symbol type for indirect functions; st_value is

treated as function pointer

• IFUNC symbol only processed as function if st_shndx !=
0 [will use it for cond. branches]

Friday, May 17, 13

Unconditional Branches [Loops]
Relocator iterates through REL entries, marking them “done”. Make
it loop & unmark, by pointing REL entries at link map’s structures!

Friday, May 17, 13

Unconditional Branches [Loops]

Friday, May 17, 13

Unconditional Branches [Loops]

Friday, May 17, 13

Unconditional Branches [Loops]

Friday, May 17, 13

Unconditional Branches [Loops]

Fix l->l_relocated

Set l->l_prev = l

Set l->l_relro_size = 0

Set l->l_info[DT_RELA] = &next rel to process

Fix l->l_info[DT_RELASZ]

Full TODO: Note: libc/ld.so version-dependent!

Friday, May 17, 13

Unconditional Branches [Loops]

Fix l->l_relocated
{offset =&(l->l_buckets), type = RELATIVE, addend=0}
{offset =&(l->l_direct_opencount), type = RELATIVE, addend=0}
{offset =&(l->l_libname->next), type = RELATIVE,
 addend=&(l->l_relocated) + 4*sizeof(int)}

Set l->l_prev = l
{offset =&(l->l_prev), type = RELATIVE, addend=&l}

Set l->l_relro_size = 0 (etc.)

Set l->l_info[DT_RELA] = &next rel to process

Fix l->l_info[DT_RELASZ]

Friday, May 17, 13

Unconditional Branches [Loops]
Finally, ending the loop (skipping past remaining
relocation entries):

 {offset =&end, type = RELATIVE, addend=0}

(end stored on stack, set to 0)

Friday, May 17, 13

Program in ELF metadata

Friday, May 17, 13

What can this do?
• NB: dependent on the Glibc version

(but there aren’t that many)

• Traverse ld.so’s link_map of all dynamically
loaded libraries (under ASLR)

• Resolve symbols & addresses of instructions

• Modify GOT

• Redirect code execution (e.g., obfuscate
backdoors & other control flow) without
affecting “native code” sections.

Friday, May 17, 13

Hiding “code” in ping

Ping runs suid root, sneak “code” into its ELF metadata:

• Given ”-t <string>”

• Usage: -t, --type=TYPE send TYPE packets

• Code: if(strcasecmp (<string>, "echo") == 0) ...

Goals:

• Redirect call to strcasecmp to execl: edit GOT entries

• Prevent call to setuid that drops root privileges: point to retq

• Work in presence of library randomization (ASLR): find base
address of glibc at runtime by traversing link_map

Friday, May 17, 13

See 29c3 talk by Rebecca “.bx” Shapiro,
https://github.com/bx/elf-bf-tools

Friday, May 17, 13

https://github.com/bx/elf-bf-tools
https://github.com/bx/elf-bf-tools

Page Fault Liberation Army

(PFLA)*

“Input is (still) a program!”

*) In x86 manuals PFLA stands for
“Page Faulting Linear Address”,

but this sounds more fashionable
Friday, May 17, 13

Let’s take an old and known thing...

(Young James Watt
was often berated
for idly watching
boiling kettles)

Friday, May 17, 13

...and see how far
we can make it go!

Friday, May 17, 13

(And where it gets stuck)

Friday, May 17, 13

“Page Fault Liberation”

l The x86 MMU is not just a look-up table!

l x86 MMU performs complex logic on
complex data structures

l The MMU has state and transitions that
brilliant hackers put to unorthodox uses.

l Can it be programmed with its input data?

Friday, May 17, 13

Traps are important

• Not usually a part of a program (unless it’s OS
or debugger), but can be: same memory space

• Traps weave between hardware/microcode &
software + data tables; e.g., hw reads page
tables, writes stack, sets up TLB entries

• Set up with regs & complex tables in RAM

• How much computing power is in that?

Friday, May 17, 13

CPU

MMU

IDT
GDT

Page
tables Stack

Read Write

Friday, May 17, 13

• unmapped/bad memory reference trap, based on
page tables & (current) IDT

• hardware writes fault info on the stack - where
it thinks the stack is (address in TSS)

• If we point “stack” into
page tables, GDT or
TSS, can we get the “tape”
of a Turing machine?

Friday, May 17, 13

The devil’s in the details
trapping bits

Friday, May 17, 13

From: duartes.org/gustavo/blog/

Global Descriptor Table
(GDT)

Default
segment
selector

Segment descriptor:

Address (”offset”)
must lie within
segment limit

Type

Friday, May 17, 13

0xDEADBEEFLinear Address:

1101111010 1110111011111011011011

37a 2db EEF

0x11111

0x1111 1EEF

Present

l All P bits set

l Ring 3: All U/S bits have to be set

l Write: All R/W bits have to be set

l What if we violate these rules?

Physical Address =

Virtual Address Translation

cr3 +
4*37a

0x10000

+ 4*2db

Friday, May 17, 13

ITS A TRAP

Friday, May 17, 13

Hidden state in MMU?
• You bet! And some of it can be

“programmed”

• Inspiration: PaX’s PAGEEXEC,
emulation of the NX bit on all CPUs
since Pentium

• Data page accesses trap when
instructions are fetched from
them; see
http://pax.grsecurity.net/docs/
pageexec.old.txt [cf. Plex86, 1999]

Friday, May 17, 13

http://pax.grsecurity.net/docs/pageexec.old.txt
http://pax.grsecurity.net/docs/pageexec.old.txt
http://pax.grsecurity.net/docs/pageexec.old.txt
http://pax.grsecurity.net/docs/pageexec.old.txt

Trap-hacks “Design Patterns”
• Overloading #PF for security policy, labeling

memory (e.g., PaX, OpenWall)

• Combining traps to trap on more complex
events (OllyBone, “fetch from a page just written”)

• Using several trap bits in different locations
to label memory for data flow control (PaX
UDEREF, SMAP/SMEP use)

• Storing extra state in TLBs (PaX PageExec)

• “Unorthodox” breakpoints, control flow, ...

Friday, May 17, 13

What’s in a trap handler
(let’s roll our own)

Friday, May 17, 13

IDT
entries:

...
8: #DF

...
14: #PF

...

Friday, May 17, 13

Call through a Trap Gate
nested interrupts?32 bit?

New code segment

Like a FAR call of old. If the new segment is in a
lower (i.e. higher privilege) Ring, we load a new SP.

Friday, May 17, 13

Pushes parameters to
“handler’s stack”

These two are only pushed
 if we changed the stack

“IRET” instruction can return from this

ESP

Friday, May 17, 13

What if this fails?

• Stack invalid?

• Code segment invalid?

• IDT entry not present?

Causes “Double Fault”(#8). “Triple fault” = Reboot

Usually #DF means OS bug, so a lot of state might
be corrupted (i.e. invalid kernel stack)

Friday, May 17, 13

Hardware Task Switching
We can use it for #PF and #DF
traps instead of Trap Gates

TR

Friday, May 17, 13

Task gate
• (unused) mechanism for hardware tasking

• Reloads (nearly) all CPU state from memory

• Task gate causes task switch on trap

Friday, May 17, 13

(addressed indirectly
 through GDT)

IDT-> GDT->TSS
It still pushes the error code

IDT

GDT

Friday, May 17, 13

Interrupt to Task Gate

1. Save state to location pointed to by TR

2. Find Task (GDT), validate + check Busy=0

3. Load new state (EIP, CR3, stack...)

4. Push error code

Doublefault

Begin executing new EIP

Friday, May 17, 13

Look Ma, it’s a
Turing machine!

Friday, May 17, 13

Friday, May 17, 13

A one-instruction machine
Instruction Format:
Label = (X <-Y,A,B)

Label:

 X=Y

 If X<4:

Goto B

 Else

X-=4
Goto A

• “Decrement-Branch-If-
Negative”

• Turing complete (!)

• ““Computer Architecture:
A Minimalist Perspective”
by Gilreath and Laplathe
(~$200)

• Or Wikipedia :)

Friday, May 17, 13

• If EIP of a handler is pointed at invalid
memory, we get another page fault
immediately; keep EIP invalid in all tasks

• Var Decrement: use TSS’ SP, pushing the stack
decrements SP by 4.

• Branch: <4 or not? Implemented by double
fault when SP cannot be decremented

Implementation sketch:

Friday, May 17, 13

Dramatis Personae I

• One GDT to rule them all

• One TSS Descriptor per instruction,
aligned with the end of a page

• IDT is mapped differently, per instruction

• A target (branch-not-taken) in Int 14, #PF

• B target (branch taken) in Int 8, #DF

Friday, May 17, 13

Dramatis Personae II

• Higher half of TSS (variables)

• Map A.Y, B.Y (the value we want to load
for next instruction) at their TSS
addresses

• map X (the value we want to write) at
the addr of the current task

• So we have the move and decrement

Friday, May 17, 13

• We split these TSS across
a page boundary

• Variables are stack pointer
entries in a TSS

• Upper Page: ESP and
segments

• Lower Page: EAX, ECX,
 EIP, CR3 (page tables)

Labels: A, B, C, ...

Friday, May 17, 13

Friday, May 17, 13

Let's step through an instruction
(Some details glossed over;

think of it as a fairy tale, not a lie)

Friday, May 17, 13

Label:

 X=Y

 If X<4:

Goto B

 Else

X-=4
Goto A

#PF/DF: “rising edge” of a clock tick

Instruction by the numbers
(or, “PFLA fetch-decode-execute” loop)

Saving old TSS state

Loading new TSS state

Attempt to save fault info to stack
(decrement ESP, write info to stack)

First instruction of new task:
causes #PF (new EIP is invalid, too)

Failure: #DF (decr ESP is invalid)
Success: (decr ESP, write info)

Friday, May 17, 13

IDT

8: Task 0x1F8

14: Task 0x1F8

GDT

0F8: Task,
Busy

1F8: Task,
Available

TSS 0

EIP,EAX, etc

SP:0x1000

TSS 1

EIP,EAX, etc

SP:0x4

CPU

EIP:FFFF FFFF

SP:FFFF 0000

TR: 0xF8

#DF

#PF

B

A

X

Y

Initial State

Friday, May 17, 13

IDT

8: Task 0x1F8

14: Task 0x1F8

GDT

0F8: Task,
Busy

1F8: Task,
Available

TSS 0

EIP,EAX, etc

SP:0x1000

TSS 1

EIP,EAX, etc

SP:0x4

CPU

EIP:FFFF FFFF

SP:FFFF 0000

TR: 0xF8

#DF

#PF

B

A

X

Y

EIP causes Pagefault

Friday, May 17, 13

IDT

8: Task 0x1F8

14: Task 0x1F8

GDT

0F8: Task,
Busy

1F8: Task,
Available

TSS 0

EIP,EAX, etc

SP:FFFF 0000

TSS 1

EIP,EAX, etc

SP:0x4

CPU

EIP:FFFF FFFF

SP:FFFF 0000

TR: 0xF8

#DF

#PF

B

A

X

Y

CPU state is saved to current task
Friday, May 17, 13

IDT

8: Task 0x1F8

14: Task 0x1F8

GDT

0F8: Task,
Busy

1F8: Task,
Busy

TSS 0

EIP,EAX, etc

SP:FFFF 0000

TSS 1

EIP,EAX, etc

SP:0x4

CPU

EIP:FFFF FFFF

SP:0x4

TR: 0x1F8

#DF

#PF

B

A

X

Y

CPU loads interrupt task
Friday, May 17, 13

IDT

8: Task 0x0F8

14: Task 0x1F8

GDT

0F8: Task,
Busy

1F8: Task,
Busy

TSS 2

EIP,EAX, etc

SP:1234 5678

TSS 0

EIP,EAX, etc

SP:FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x4

TR: 0x1F8

New page tables
point to new things!

#DF

#PF

B

A

A.Y

X

(duplicate)

Friday, May 17, 13

“Implementation Problem”

Friday, May 17, 13

That one pesky busy bit...

CPU won’t load
task if this is set

Friday, May 17, 13

That one pesky busy bit...

CPU won’t load
task if this is set

We need to overwrite it. Luckily, the CPU always
saves all the state (even if not dirty).

So: map the lower half of TSS over GDT, so that
saved EAX,ECX from TSS overwrite descriptor;

same content, only busy bit cleared.

Friday, May 17, 13

Dealing with that bit
needs a nuclear

option...

Friday, May 17, 13

IDT

8: Task 0x0F8

14: Task 0x1F8

GDT

0F8: Task,
Available

1F8: Task,
Available

TSS 2

EIP,EAX, etc

SP:1234 5678

TSS 0

EIP,EAX, etc

FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x4

TR: 0x1F8

#DF

#PF

B

A Lower half of TSS is
mapped over GDT descriptor

=>
saving the old state overwrites

 the GDT entry busy bit!
Friday, May 17, 13

IDT

8: Task 0x0F8

14: Task 0x1F8

GDT

0F8: Task,
Available

1F8: Task,
Available

TSS 2

EIP,EAX, etc

SP: 1234 5678

TSS 0

EIP,EAX, etc

FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x0

TR: 0x1F8

#DF

#PF

B

A

#PF error code is pushed:
Decrements ESP

Friday, May 17, 13

IDT

8: Task 0x0F8

14: Task
0x1F8

GDT

0F8: Task,
Available

1F8: Task,
Busy

TSS 2

EIP,EAX, etc

SP: 1234 5678

TSS 0

EIP,EAX, etc

FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x0

TR: 0x1F8

#DF

#PF

B

A

Another Page Fault,
Saves state

Friday, May 17, 13

IDT

8: Task 0x0F8

14: Task 0x1F8

GDT

0F8: Task,
Busy

1F8: Task,
Available

TSS 2

EIP,EAX, etc

SP: 0

TSS 0

EIP,EAX, etc

FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x0

TR: 0x0F8

#DF

#PF

B

A

But we can't push,
So #DF

Friday, May 17, 13

IDT

8: Task 0x0F8

14: Task 0x1F8

GDT

0F8: Task,
Available

1F8: Task,
Available

TSS 2

EIP,EAX, etc

SP: 0

TSS 0

EIP,EAX, etc

FFFF 0000

CPU

EIP:FFFF FFFF

SP:FFFF 0000

TR: 0x0F8

#DF

#PF

B

A

Loaded new state from #DF

Friday, May 17, 13

And now to face the uglier truth...

Friday, May 17, 13

IDT

8: Task 0x0F8

14: Task
0x2F8

GDT

0F8: Task,
Busy

1F8: Task,
Busy

2F8: Task,
available

TSS 2

EIP,EAX, etc

SP:1234 5678

TSS 0

EIP,EAX, etc

SP:FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x4

TR: 0x1F8

IDT trick must take care of
task switch logic checking TR contents
=> must duplicate GDT descriptors

Friday, May 17, 13

Meanwhile, on the FSB

Write 0x8 0xFFFF 0000

Read 0x1008 0x4

Write 0x2008 0x0

Read 0x8 0xFFFF 0000

(Slightly redacted)

And they all compute happily ever after
(for all we know)

Friday, May 17, 13

What restrictions do we
have?

• Needs kernel access to set up :)

• No two double faults in a row

• Can only use our one awkward instruction

• Can only work with SP of TSS aligned
across page (very limited coverage of phys.
mem)

Friday, May 17, 13

Friday, May 17, 13

White Hat Takeaway

• Check how your tools handle old/unused
CPU features

• Don’t trust the spec

Friday, May 17, 13

Black Hat Takeaway

• A really nice, big Red Pill

• With more work, you can probably make it
work differently in Analysis tools

• Or just shoot down the host

Friday, May 17, 13

Strawhat Takeaway

• It’s a weird machine! (And we like them)

• We are working on 64 bit, better tools

• Compiler, debugger

• See how it works on different hardware?

Friday, May 17, 13

“There is never enough time.
Thank you for yours!”

--Dan Geer

https://github.com/jbangert/trapcc

https://github.com/bx/elf-bf-tools
@bxsays

@JulianBangert

Friday, May 17, 13

https://github.com/jbangert/trapcc
https://github.com/jbangert/trapcc
https://github.com/bx/elf-bf-tools
https://github.com/bx/elf-bf-tools

