
Attack on the
Core!

@zer0mem

#whoami - Peter Hlavaty (@zer0mem)
[KEEN TEAM]

 Background

 @K33nTeam

 Previously ~4 years in ESET

 Contact

 twitter : @zer0mem

 weibo : weibo.com/u/5238732594

 blog : http://zer0mem.sk

 src : https://github.com/zer0mem

outline

ATTACKER

▪ KernelIo tech

▪ Vulnerability cases

▪ Design features (flaws)

▪ State of targets / security

DEVELOPER

▪ Point of view

▪ Goal

▪ Environment

▪ C++! no more shellcoding!

Part 1 -> KernelIo tech

Privileged cpl3 != cpl0
[NtQuerySystemInformation]

• NtQueryInformation from win8.1
requires elevated privileges

• Still callable from user mode

• Driver Signing Enforcement does
not like installing drivers even
from privileged ones …

• Privileged are enpowered with
good eye sight, kernel leakage

Read & Write boosting
[windows]

• write-where vuln

• what => should be above
read / write target

• Pool address can be
sufficient

Read & Write boosting
[windows]

 KPP is not here to punish
attackers

 leak & write-where-
(semi)what

 patch & use & patch back

 turned into full KernelIo

 ReadFile alternative just
with
nt!MmUserProbeAddress

http://haxpo.nl/wp-content/uploads/2014/01/
D1T2-Bypassing-Endpoint-Security-for-Fun-and-Profit.pdf

Read & Write boosting
[windows]

https://www.dropbox.com/sh/bkfajegn2mn35ng/AABm_RyD4x9VLzYjI9n9Dl2Wa?dl=0

http://haxpo.nl/wp-content/uploads/2014/01/D1T2-Bypassing-Endpoint-Security-for-Fun-and-Profit.pdf
http://haxpo.nl/wp-content/uploads/2014/01/D1T2-Bypassing-Endpoint-Security-for-Fun-and-Profit.pdf
https://www.dropbox.com/sh/bkfajegn2mn35ng/AABm_RyD4x9VLzYjI9n9Dl2Wa?dl=0

Read & Write boosting
[linux / droids]

• leak & write-where vuln

• what => should be above read / write target

• nullptr / pool address can be sufficient

http://vulnfactory.org/blog/2011/06/05/smep-what-is-it-and-how-to-beat-it-on-linux/

http://vulnfactory.org/blog/2011/06/05/smep-what-is-it-and-how-to-beat-it-on-linux/

 PXN UDEREF handle it

 PXN not in default build
of linux

 On droids ? XD

 turned into full KernelIo

http://vulnfactory.org/research/stackjacking-infiltrate11.pdf

Read & Write boosting
[linux / droids]

http://vulnfactory.org/research/stackjacking-infiltrate11.pdf

Why KernelIo ?

▪ abstraction behind
virtual address

▪ what is SMAP / SMEP
about ?

MMU straigforward idea
[PoC by MWR Labs]

1. choose address X with isolated page tables
1. To be sure write-where does not hit other used memory

2. mmap (X)

3. Patch S/U bits (write-where)

4. S/U bits need to patch per PXE !
1. self ref, can help 

5. cpl0 memcpy (X, shellcode)

6. Pwn (SMEP, SMAP out of the game)

https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass/

http://fluxius.handgrep.se/2011/10/20/the-art-of-elf-analysises-and-exploitations/

https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass/
http://fluxius.handgrep.se/2011/10/20/the-art-of-elf-analysises-and-exploitations/

Symbolic cpl0 – cpl3 separators

“
The ProbeForRead routine checks
that a user-mode buffer actually
resides in the user portion of the
address space, and is correctly
aligned.
“

 Ok, what about
aliasing ?!

 and about ret2dir
approach ? 

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kemerlis

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kemerlis

KERNEL- FAIL – SAFE – CHECKS

 copy_to/from_user

 ProbeForRead/Write

 Checking just
symbolic values

 not cover aliasing…

Part 2 -> cases

Out of Boundary

1. Trivial to exploit

2. Generic implementation

3. write/read – where

4. NO - SMAP

5. but sometimes PXN

Out of Boundary

 what if SMAP enabled ?

 Is over ?

 Read – no problem, just do
not try to read from
usermode

 Write – you have to know
where to write – relative
positioned structs

kmalloc under/overflow

1. under/overflowed kmalloc

2. copy_to/from_user

3. search_exception_table
for frv, but idea same

4. force copy_to/from_user
fail

5. Copied just controlled
bytes even in
under/overflow situation!

KASLR

• From win8.1
NtQuerySystemInfo is just
for privileged user

• /proc/kallsyms same, just for
privileged ones

• Need to info-leak

• Read-where vuln

• Abusing weak or old
mechanism

KASLR

 PageTable concept is old

 That time no hardering needed

 Crucial for performance

 Timing attacks, PageFault
measuring, seems doable, see
recent research

 A lot of static PHYSICAL
addresses, KASLR weakened

 MMU mechanism attacks
target of recent research, and
it works …

http://labs.bromium.com/2014/10/27/tsx-improves-timing-attacks-against-kaslr/
http://felinemenace.org/~nemo/docs/TR-HGI-2013-001-real.pdf

http://labs.bromium.com/2014/10/27/tsx-improves-timing-attacks-against-kaslr/
http://felinemenace.org/~nemo/docs/TR-HGI-2013-001-real.pdf

Part 3 -> design features
(flaws)

Linked lists

• nt!_list_entry / list_head

• Lazy list entry assertions

• Proper design ?

• Manipulating next / prev
outside of API ?

• Hardening ?

• Common member

• Intrusive containers

• Redirect list

• pool leak && write-where

• Own content && abussing
algo ?

http://www.k33nteam.org/blog.htm (nt!list_entry)

http://www.k33nteam.org/blog.htm

Kernel hidden pointers

plenty of c++
alike vtables

callbacks

ops

context func

Interesting
design features

typecast instead
of inheritance

Plenty data
pointers

No integrity
checks

Plenty data
structs

Sensitive trusted
context

No
hardening

Plain pointers

http://www.nosuchcon.org/talks/2013/
D3_02_Nikita_Exploiting_Hardcore_Pool_Corruptions_in_Microsoft_Windows_Kernel.pdf

http://www.nosuchcon.org/talks/2013/D3_02_Nikita_Exploiting_Hardcore_Pool_Corruptions_in_Microsoft_Windows_Kernel.pdf
http://www.nosuchcon.org/talks/2013/D3_02_Nikita_Exploiting_Hardcore_Pool_Corruptions_in_Microsoft_Windows_Kernel.pdf

Kernel ops by design

• Callback mechanism

• open / write / read …

• If not implemented
NULLPTR

• If not implemented no call
performed

1. nullptr write vuln

2. null some operation

3. Abuse scoped resource
handling logic

4. pwn

Part 4 -> state of exploitation

before win8.1

POOL
HARDENING

SMEP

SMAP

PLAIN
PTRS

“KASLR”
NtQuerySysInfo

even kids … … do pwn

Era of Windows 8.1, earlier and current linux

POOL
HARDENING

SMEP

SMAP

PLAIN
PTRS

KASLR
 Cool, seems more hardening

More software security features

 Access control improved

UEFI

 Finally! More hardware features
goes implemented SMEP/SMAP, …

 SMAP still waiting in some cases
….

 Exploiting coming finally
challenging! BUT still kernel not
hardened enough

Future of OS ?

POOL
HARDENING

SMEP

SMAP

HARDENED
PTRS

KASLR
Hardware features implemented

Strong complex access control
policy

Well randomized kernel space

Kicked off obsolete designs

Well designed core

No plain pointers

Data integrity checks

Rebirth to
K E R N E L

Developing begins

CHANGING DIRECTION
[everything is just point of view]

Until now you were
ATTACKER

• NO MATTER HOW, but get
EXEC!

• hooks, patching, non-safe
walkers, etc.

Now you are

DEVELOPER !

• Pretend to be one of them

• Now you deal with KPP and
others mitigations

Kernel windows DEVELOPER view

▪ In kernel, but some obstacles reminds :

▪ PsSet * Routine, ObRegisterCallbacks, etc.
– Callback integrity validation!

▪ IoAttachDeviceToDeviceStack, IoQueueWorkItem
– DEVICE_OBJECT* needed (own is preferable)

Kernel DEVELOPing begins
[DRIVER/DEVICE_object*]

▪ Kernel loader method, or :

▪ Create your own!
– IoCreateDevice

– _OBJECT_HEADER + DRIVER_OBJECT

Kernel monitoring
[device attaching]

▪ Attach to driver

▪ Filter :
– Network communication

– File system communication

– …

Kernel monitoring
[legacy]

▪ File System Filter Driver

▪ FAST_IO_DISPATCH
– Register dropped files

– Access to files

– …

▪ Also minifilters are option

Kernel monitoring
[IoCompletion]

▪ IoCompletion
– Monitor ALPC

– Used by resolving host, etc. etc.

– Remote process communication

– Per process

Linux, everything is a file

1. Kernel ops

2. Find in which one you
are interesting in

3. Register to chain

4. cdev_add
(register_chrdev)

SELinux, SEAndroid, ACL

 Kernel escape

 Natural bypass

 Feature :

1. Developing superuser
deamon

2. does not rely on special
syscalls

3. Normal application
development, api …

4. Separation of responsibilities

5. Kernel – bypass policy checks

6. Daemon – provide boosted
functionality to user

come on … why shellcoding or pure c ?

C++

Exploitation means developming!

▪ C++ is about compiler & you skills

▪ You think you can wrote better shellcode than
compiler ? 

▪ You can code really close to assembly level –
when you know your compiler

▪ c++ well maintainable, scalable, modulable

▪ Design patterns

▪ Complex frameworks

http://www.exploit-monday.com/2013/08/writing-optimized-windows-shellcode-in-c.html
https://github.com/mattifestation/PIC_Bindshell (Window Shellcode in C)

http://www.exploit-monday.com/2013/08/writing-optimized-windows-shellcode-in-c.html
https://github.com/mattifestation/PIC_Bindshell

Exploiting is development!

▪ Before you can write PoC for exploits as easy as hello world

▪ Things getting complex

▪ Now with same style you can end up with unreadable master piece

▪ Next time you have good time to rewriting lot of the same logic

▪ And at the end you end up with black-boxes chained together with
black-magic, somehow working

▪ Something will change … start fixing black-box

Exploitation framework can be powerfull

▪ UserCode in kernel allowed!
– Kernel code hidden inside binary

– Fully c++ driver!

▪ Mixing User & Kernel code
– just avoid direct linking imported kernel functions!

– Also avoid to mixing um & km headers together in compile time ;)

– Compile standalone kernel code as .lib

– link kernel code .lib to exploit .exe

1.

2.

3.

4.

Copy whole PE to RWE kernel page
 ExAllocatePool(NonPagedPoolExecute,SizeOfImage);

Fix Rellocations

resolve kernel part of
Import table

Ready for exec with CPL0!

CPL Teleport

KERNEL as exploitation VECTOR

Raise of C++, no more shellcoding!

1. Mixing user & kernel code

2. no imports

3. c++

4. relocations

5. Dynamic loader

Raise of C++, no more shellcoding!

1. c++ kernel code

2. Compiled with user mode code

3. No Imports, but does not impact code

C++ ‘shellcoding’ framework

▪ no import table

▪ no need to handle imports by your own

▪ .py scripts set up all imports

▪ no need to code position independent code

▪ fixups resolved by loader

▪ C++ (partially also std & boost) supported

▪ no need to ship kernel code as resource, or shellcode

▪ no need to special coding style to kernel module, classical developing

▪ All features (c++, imports, fixups..) applies to kernel code as well

http://www.zer0mem.sk/?p=517

http://www.codeproject.com/Articles/22801/Drivers-Exceptions-and-C

http://www.hollistech.com/Resources/Cpp/kernel_c_runtime_library.htm

http://www.zer0mem.sk/?p=517
http://www.codeproject.com/Articles/22801/Drivers-Exceptions-and-C
http://www.hollistech.com/Resources/Cpp/kernel_c_runtime_library.htm

C++ ‘shellcoding’ framework

https://github.com/k33nteam/cc-shellcoding

releasing very soon @K33nTeam

https://github.com/k33nteam/cc-shellcoding

materials
(not listed in slides before)

– http://www.codeproject.com/Articles/43586/File-System-Filter-Driver-Tutorial

– www.bitnuts.de/KernelBasedMonitoring.pdf

– https://projects.honeynet.org/svn/capture-hpc/capture-hpc/tags/2.5/capture-
client/KernelDrivers/CaptureKernelDrivers/FileMonitor/CaptureFileMonitor.c

– http://www.osronline.com/article.cfm?article=199

http://www.codeproject.com/Articles/43586/File-System-Filter-Driver-Tutorial
http://www.bitnuts.de/KernelBasedMonitoring.pdf
https://projects.honeynet.org/svn/capture-hpc/capture-hpc/tags/2.5/capture-client/KernelDrivers/CaptureKernelDrivers/FileMonitor/CaptureFileMonitor.c
http://www.osronline.com/article.cfm?article=199

jfang

liac
wushi nforest

NTarakanov

j00ru

aionescu

Acknowledge Thanks to :

cesarcer

dan rosenberg

rafal wojtczuk

krzywix

maxim

We are hiring!

▪ #1 vulnerability research team in China
– http://www.k33nteam.org/cvelist.htm

– pwn2own

▪ Enjoying research ?
– Mobile (Android, iOS, WP)

– PC (Windows, OS X, Chrome OS, etc.)

▪ Willing to move to Shanghai ?
– Beijing ?

▪ Want to join our team ?
– Application security

– Kernel security hr (at) keencloudtech.com

http://www.k33nteam.org/cvelist.htm

2014 - $500,000
2015 - $???????? Pick a device, name your own challenge!

Q & A

Thank You.

follow us
@K33nTeam

peter (at) keencloudtech.com

